Why you should use a BSD style license for your Open Source Project
Table of Contents
	1. Introduction
	2. Very Brief Open Source History
	3. Unix from a BSD Licensing Perspective
	4. The Current State of FreeBSD and BSD Licenses
	5. The origins of the GPL
	6. The origins of Linux and the LGPL
	7. Open Source licenses and the Orphaning Problem
	8. What a license cannot do
	9. GPL Advantages and Disadvantages
	10. BSD Advantages
	11. Specific Recommendations for using a BSD license
	12. Conclusion
	13. Addenda

Why you should use a BSD style license for your Open Source Project
Bruce Montague
<brucem@alumni.cse.ucsc.edu>

Revision: 43184Legal NoticeLast modified on 2013-11-13 07:52:45 by hrs.
 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction
This document makes a case for using a BSD style license for
 software and data; specifically it recommends using a BSD style
 license in place of the GPL. It can also be read as a BSD versus
 GPL Open Source License introduction and summary.
2. Very Brief Open Source History
Long before the term “Open Source” was used, software was
 developed by loose associations of programmers and freely
 exchanged. Starting in the early 1950's, organizations such as
 SHARE and DECUS developed much of the
 software that computer hardware companies bundled with their
 hardware offerings. At that time computer companies were in the
 hardware business; anything that reduced software cost and made
 more programs available made the hardware companies more
 competitive.
This model changed in the 1960's. In 1965 ADR developed the
 first licensed software product independent of a hardware
 company. ADR was competing against a free IBM package originally
 developed by IBM customers. ADR patented their software in
 1968. To stop sharing of their program, they provided it under an
 equipment lease in which payment was spread over the lifetime of
 the product. ADR thus retained ownership and could control resale
 and reuse.
In 1969 the US Department of Justice charged IBM with
 destroying businesses by bundling free software with IBM
 hardware. As a result of this suit, IBM unbundled its software;
 that is, software became independent products separate from
 hardware.
In 1968 Informatics introduced the first commercial killer-app
 and rapidly established the concept of the software product, the
 software company, and very high rates of return. Informatics
 developed the perpetual license which is now standard throughout
 the computer industry, wherein ownership is never transferred to
 the customer.
3. Unix from a BSD Licensing Perspective
AT&T, who owned the original Unix implementation, was a
 publicly regulated monopoly tied up in anti-trust court; it was
 legally unable to sell a product into the software market. It was,
 however, able to provide it to academic institutions for the price
 of media.
Universities rapidly adopted Unix after an OS conference
 publicized its availability. It was extremely helpful that Unix
 ran on the PDP-11, a very affordable 16-bit computer, and was
 coded in a high-level language that was demonstrably good for
 systems programming. The DEC PDP-11 had, in effect, an open
 hardware interface designed to make it easy for customers to write
 their own OS, which was common. As DEC founder Ken Olsen famously
 proclaimed, “software comes from heaven when you have good
 hardware”.
Unix author Ken Thompson returned to his alma mater,
 University of California Berkeley (UCB), in 1975 and taught the
 kernel line-by-line. This ultimately resulted in an evolving
 system known as BSD (Berkeley Standard Distribution). UCB
 converted Unix to 32-bits, added virtual memory, and implemented
 the version of the TCP/IP stack upon which the Internet was
 essentially built. UCB made BSD available for the cost of media,
 under what became known as “the BSD license”. A customer purchased
 Unix from AT&T and then ordered a BSD tape from UCB.
In the mid-1980s a government anti-trust case against ATT
 ended with the break-up of ATT. ATT still owned Unix and was now
 able to sell it. ATT embarked on an aggressive licensing effort
 and most commercial Unixes of the day became ATT-derived.
In the early 1990's ATT sued UCB over license violations
 related to BSD. UCB discovered that ATT had incorporated, without
 acknowledgment or payment, many improvements due to BSD into ATT's
 products, and a lengthy court case, primarily between ATT and UCB,
 ensued. During this period some UCB programmers embarked on a
 project to rewrite any ATT code associated with BSD. This project
 resulted in a system called BSD 4.4-lite (lite because it was not
 a complete system; it lacked 6 key ATT files).
A lengthy series of articles published slightly later in
 Dr. Dobbs magazine described a BSD-derived 386 PC version of Unix,
 with BSD-licensed replacement files for the 6 missing 4.4 lite
 files. This system, named 386BSD, was due to ex-UCB programmer
 William Jolitz. It became the original basis of all the PC BSDs in
 use today.
In the mid 1990s, Novell purchased ATT's Unix rights and a
 (then secret) agreement was reached to terminate the lawsuit. UCB
 soon terminated its support for BSD.
4. The Current State of FreeBSD and BSD Licenses
The so-called new BSD
 license applied to FreeBSD within the last few years is
 effectively a statement that you can do anything with the program
 or its source, but you do not have any warranty and none of the
 authors has any liability (basically, you cannot sue anybody). This
 new BSD license is intended to encourage product
 commercialization. Any BSD code can be sold or included in
 proprietary products without any restrictions on the availability
 of your code or your future behavior.
Do not confuse the new BSD license with “public
 domain”. While an item in the public domain is also free
 for all to use, it has no owner.
5. The origins of the GPL
While the future of Unix had been so muddled in the late 1980s
 and early 1990s, the GPL, another development with important
 licensing considerations, reached fruition.
Richard Stallman, the developer of Emacs, was a member of the
 staff at MIT when his lab switched from home-grown to proprietary
 systems. Stallman became upset when he found that he could not
 legally add minor improvements to the system. (Many of Stallman's
 co-workers had left to form two companies based on software
 developed at MIT and licensed by MIT; there appears to have been
 disagreement over access to the source code for this software).
 Stallman devised an alternative to the commercial software license
 and called it the GPL, or "GNU Public License". He also started a
 non-profit foundation, the Free
 Software Foundation (FSF), which intended to develop an entire
 operating system, including all associated software, that would
 not be subject to proprietary licensing. This system was called
 GNU, for "GNU is Not Unix".
The GPL was designed to be the antithesis of the standard
 proprietary license. To this end, any modifications that were
 made to a GPL program were required to be given back to the GPL
 community (by requiring that the source of the program be
 available to the user) and any program that used or linked to GPL
 code was required to be under the GPL. The GPL was intended to
 keep software from becoming proprietary. As the last paragraph of
 the GPL states:
“This General Public License does not permit
 incorporating your program into proprietary
 programs.”[1]
The GPL
 is a complex license so here are some rules of thumb when using
 the GPL:
	you can charge as much as you want for
 distributing, supporting, or documenting the software, but you
 cannot sell the software itself.

	the rule-of-thumb states that if GPL source
 is required for a program to compile, the program must be under
 the GPL. Linking statically to a GPL library requires a program
 to be under the GPL.

	the GPL requires that any patents associated with
 GPLed software must be licensed for everyone's free
 use.

	simply aggregating software together, as when
 multiple programs are put on one disk, does not count as
 including GPLed programs in non-GPLed
 programs.

	output of a program does not count as a derivative
 work. This enables the gcc compiler to be used in commercial
 environments without legal problems.

	since the Linux kernel is under the GPL, any code
 statically linked with the Linux kernel must be GPLed. This
 requirement can be circumvented by dynamically linking loadable
 kernel modules. This permits companies to distribute binary
 drivers, but often has the disadvantage that they will only work
 for particular versions of the Linux kernel.

Due in part to its complexity, in many parts of the world
 today the legalities of the GPL are being ignored in regard to
 Linux and related software. The long-term ramifications of this
 are unclear.
6. The origins of Linux and the LGPL
While the commercial Unix wars raged, the Linux kernel was
 developed as a PC Unix clone. Linus Torvalds credits the existence
 of the GNU C compiler and the associated GNU tools for the
 existence of Linux. He put the Linux kernel under the GPL.
Remember that the GPL requires anything that statically links
 to any code under the GPL also be placed under the GPL. The source
 for this code must thus be made available to the user of the
 program. Dynamic linking, however, is not considered a violation
 of the GPL. Pressure to put proprietary applications on Linux
 became overwhelming. Such applications often must link with system
 libraries. This resulted in a modified version of the GPL called
 the LGPL
 ("Library", since renamed to "Lesser", GPL). The LGPL allows
 proprietary code to be linked to the GNU C library, glibc. You do
 not have to release the source to code which has been dynamically
 linked to an LGPLed library.
If you statically link an application with glibc, such as is
 often required in embedded systems, you cannot keep your
 application proprietary, that is, the source must be
 released. Both the GPL and LGPL require any modifications to the
 code directly under the license to be released.
7. Open Source licenses and the Orphaning Problem
One of the serious problems associated with proprietary
 software is known as “orphaning”. This occurs when a
 single business failure or change in a product strategy causes a
 huge pyramid of dependent systems and companies to fail for
 reasons beyond their control. Decades of experience have shown
 that the momentary size or success of a software supplier is no
 guarantee that their software will remain available, as current
 market conditions and strategies can change rapidly.
The GPL attempts to prevent orphaning by severing the link to
 proprietary intellectual property.
A BSD license gives a small company the equivalent of
 software-in-escrow without any legal complications or costs. If a
 BSD-licensed program becomes orphaned, a company can simply take
 over, in a proprietary manner, the program on which they are
 dependent. An even better situation occurs when a BSD code-base is
 maintained by a small informal consortium, since the development
 process is not dependent on the survival of a single company or
 product line. The survivability of the development team when they
 are mentally in the zone is much more important than simple
 physical availability of the source code.
8. What a license cannot do
No license can guarantee future software
 availability. Although a copyright holder can traditionally change
 the terms of a copyright at anytime, the presumption in the BSD
 community is that such an attempt simply causes the source to
 fork.
The GPL explicitly disallows revoking the license. It has
 occurred, however, that a company (Mattel) purchased a GPL
 copyright (cphack), revoked the entire copyright, went to court,
 and prevailed [2]. That is, they legally revoked the entire
 distribution and all derivative works based on the
 copyright. Whether this could happen with a larger and more
 dispersed distribution is an open question; there is also some
 confusion regarding whether the software was really under the
 GPL.
In another example, Red Hat purchased Cygnus, an engineering
 company that had taken over development of the FSF compiler
 tools. Cygnus was able to do so because they had developed a
 business model in which they sold support for GNU software. This
 enabled them to employ some 50 engineers and drive the direction
 of the programs by contributing the preponderance of
 modifications. As Donald Rosenberg states "projects using licenses
 like the GPL...live under constant threat of having someone take
 over the project by producing a better version of the code and
 doing it faster than the original owners." [3]
9. GPL Advantages and Disadvantages
A common reason to use the GPL is when modifying or extending
 the gcc compiler. This is particularly apt when working with
 one-off specialty CPUs in environments where all software costs
 are likely to be considered overhead, with minimal expectations
 that others will use the resulting compiler.
The GPL is also attractive to small companies selling CDs in
 an environment where "buy-low, sell-high" may still give the
 end-user a very inexpensive product. It is also attractive to
 companies that expect to survive by providing various forms of
 technical support, including documentation, for the GPLed
 intellectual property world.
A less publicized and unintended use of the GPL is that it is
 very favorable to large companies that want to undercut software
 companies. In other words, the GPL is well suited for use as a
 marketing weapon, potentially reducing overall economic benefit
 and contributing to monopolistic behavior.
The GPL can present a real problem for those wishing to
 commercialize and profit from software. For example, the GPL adds
 to the difficulty a graduate student will have in directly forming
 a company to commercialize his research results, or the difficulty
 a student will have in joining a company on the assumption that a
 promising research project will be commercialized.
For those who must work with statically-linked implementations
 of multiple software standards, the GPL is often a poor license,
 because it precludes using proprietary implementations of the
 standards. The GPL thus minimizes the number of programs that can
 be built using a GPLed standard. The GPL was intended to not
 provide a mechanism to develop a standard on which one engineers
 proprietary products. (This does not apply to Linux applications
 because they do not statically link, rather they use a trap-based
 API.)
The GPL attempts to make programmers contribute to an evolving
 suite of programs, then to compete in the distribution and support
 of this suite. This situation is unrealistic for many required
 core system standards, which may be applied in widely varying
 environments which require commercial customization or integration
 with legacy standards under existing (non-GPL) licenses.
 Real-time systems are often statically linked, so the GPL and LGPL
 are definitely considered potential problems by many embedded
 systems companies.
The GPL is an attempt to keep efforts, regardless of demand,
 at the research and development stages. This maximizes the
 benefits to researchers and developers, at an unknown cost to
 those who would benefit from wider distribution.
The GPL was designed to keep research results from
 transitioning to proprietary products. This step is often assumed
 to be the last step in the traditional technology transfer
 pipeline and it is usually difficult enough under the best of
 circumstances; the GPL was intended to make it impossible.
10. BSD Advantages
A BSD style license is a good choice for long duration
 research or other projects that need a development environment
 that:
	has near zero cost

	will evolve over a long period of
 time

	permits anyone to retain the option of
 commercializing final results with minimal legal
 issues.

This final consideration may often be the dominant one, as it
 was when the Apache project decided upon its license:
“This type of license is ideal for promoting the use of
 a reference body of code that implements a protocol for common
 service. This is another reason why we choose it for the Apache
 group - many of us wanted to see HTTP survive and become a true
 multiparty standard, and would not have minded in the slightest if
 Microsoft or Netscape choose to incorporate our HTTP engine or any
 other component of our code into their products, if it helped
 further the goal of keeping HTTP common... All this means that,
 strategically speaking, the project needs to maintain sufficient
 momentum, and that participants realize greater value by
 contributing their code to the project, even code that would have
 had value if kept proprietary.”
Developers tend to find the BSD license attractive as it keeps
 legal issues out of the way and lets them do whatever they want
 with the code. In contrast, those who expect primarily to use a
 system rather than program it, or expect others to evolve the
 code, or who do not expect to make a living from their work
 associated with the system (such as government employees), find
 the GPL attractive, because it forces code developed by others to
 be given to them and keeps their employer from retaining copyright
 and thus potentially "burying" or orphaning the software. If you
 want to force your competitors to help you, the GPL is
 attractive.
A BSD license is not simply a gift. The question “why
 should we help our competitors or let them steal our work?”
 comes up often in relation to a BSD license. Under a BSD license,
 if one company came to dominate a product niche that others
 considered strategic, the other companies can, with minimal
 effort, form a mini-consortium aimed at reestablishing parity by
 contributing to a competitive BSD variant that increases market
 competition and fairness. This permits each company to believe
 that it will be able to profit from some advantage it can provide,
 while also contributing to economic flexibility and
 efficiency. The more rapidly and easily the cooperating members
 can do this, the more successful they will be. A BSD license is
 essentially a minimally complicated license that enables such
 behavior.
A key effect of the GPL, making a complete and competitive
 Open Source system widely available at cost of media, is a
 reasonable goal. A BSD style license, in conjunction with
 ad-hoc-consortiums of individuals, can achieve this goal without
 destroying the economic assumptions built around the
 deployment-end of the technology transfer pipeline.
11. Specific Recommendations for using a BSD license
	The BSD license is preferable for transferring
 research results in a way that will widely be deployed and most
 benefit an economy. As such, research funding agencies, such as
 the NSF, ONR and DARPA, should encourage in the earliest phases
 of funded research projects, the adoption of BSD style licenses
 for software, data, results, and open hardware. They should
 also encourage formation of standards based around implemented
 Open Source systems and ongoing Open Source
 projects.

	Government policy should minimize the costs and
 difficulties in moving from research to deployment. When
 possible, grants should require results to be available under a
 commercialization friendly BSD style license.

	In many cases, the long-term results of a BSD
 style license more accurately reflect the goals proclaimed in
 the research charter of universities then what occurs when
 results are copyrighted or patented and subject to proprietary
 university licensing. Anecdotal evidence exists that
 universities are financially better rewarded in the long run by
 releasing research results and then appealing to donations from
 commercially successful alumni.

	Companies have long recognized that the creation
 of de facto standards is a key marketing technique. The BSD
 license serves this role well, if a company really has a unique
 advantage in evolving the system. The license is legally
 attractive to the widest audience while the company's expertise
 ensures their control. There are times when the GPL may be the
 appropriate vehicle for an attempt to create such a standard,
 especially when attempting to undermine or co-opt others. The
 GPL, however, penalizes the evolution of that standard, because
 it promotes a suite rather than a commercially applicable
 standard. Use of such a suite constantly raises
 commercialization and legal issues. It may not be possible to
 mix standards when some are under the GPL and others are not. A
 true technical standard should not mandate exclusion of other
 standards for non-technical reasons.

	Companies interested in promoting an evolving
 standard, which can become the core of other companies' commercial
 products, should be wary of the GPL. Regardless of the license
 used, the resulting software will usually devolve to whoever
 actually makes the majority of the engineering changes and most
 understands the state of the system. The GPL simply adds
 additional legal friction to the result.

	Large companies, in which Open Source code is
 developed, should be aware that programmers appreciate Open Source
 because it leaves the software available to the employee when
 they change employers. Some companies encourage this behavior as
 an employment perk, especially when the software involved is not
 directly strategic. It is, in effect, a front-loaded retirement
 benefit with potential lost opportunity costs but no direct
 costs. Encouraging employees to work for peer acclaim outside
 the company is a cheap portable benefit a company can sometimes
 provide with near zero downside.

	Small companies with software projects vulnerable
 to orphaning should attempt to use the BSD license when
 possible. Companies of all sizes should consider forming such
 Open Source projects when it is to their mutual advantage to
 maintain the minimal legal and organization overheads associated
 with a true BSD-style Open Source project.

	Non-profits should participate in Open Source
 projects when possible. To minimize software engineering
 problems, such as mixing code under different licenses,
 BSD-style licenses should be encouraged. Being leery of the GPL
 should particularly be the case with non-profits that interact
 with the developing world. In some locales where application of
 law becomes a costly exercise, the simplicity of the new BSD
 license, as compared to the GPL, may be of considerable
 advantage.

12. Conclusion
In contrast to the GPL, which is designed to prevent the
 proprietary commercialization of Open Source code, the BSD license
 places minimal restrictions on future behavior. This allows BSD
 code to remain Open Source or become integrated into commercial
 solutions, as a project's or company's needs change. In other
 words, the BSD license does not become a legal time-bomb at any
 point in the development process.
In addition, since the BSD license does not come with the legal
 complexity of the GPL or LGPL licenses, it allows developers and
 companies to spend their time creating and promoting good code
 rather than worrying if that code violates licensing.
13. Addenda

[1] http://www.gnu.org/licenses/gpl.html

[2] http://archives.cnn.com/2000/TECH/computing/03/28/cyberpatrol.mirrors/

[3] Open Source: the Unauthorized White Papers, Donald K. Rosenberg, IDG Books,
 2000. Quotes are from page 114, ``Effects of the GNU GPL''.

[4] In the "What License to Use?" section of
 http://www.oreilly.com/catalog/opensources/book/brian.html

This whitepaper is a condensation of an original work available at
http://alumni.cse.ucsc.edu/~brucem/open_source_license.htm

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Intel, Celeron, Centrino, Core, EtherExpress, i386,
 i486, Itanium, Pentium, and Xeon are trademarks or registered
 trademarks of Intel Corporation or its subsidiaries in the United
 States and other countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

