Filtering Bridges
Table of Contents
	1. Why use a filtering bridge?
	2. How to Install	2.1. Kernel Configuration
	2.2. Modules Loading

	3. Final Preparation
	4. Enabling the Bridge
	5. Configuring The Firewall
	6. Contributors

Filtering Bridges
Alex Dupre
<ale@FreeBSD.org>

Revision: 44681Legal NoticeLast modified on 2014-04-28 20:19:20 by wblock.Abstract
Often it is useful to divide one physical network (like an
	Ethernet) into two separate segments without having to create subnets,
	and use a router to link them together. The device that connects the
	two networks in this way is called a bridge. A FreeBSD system with
	two network interfaces is enough in order to act as a bridge.
A bridge works by scanning the addresses of MAC
	level (Ethernet addresses) of the devices connected to each of its
	network interfaces and then forwarding the traffic between the two
	networks only if the source and the destination are on different
	segments. Under many points of view a bridge is similar to an Ethernet
	switch with only two ports.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Why use a filtering bridge?
More and more frequently, thanks to the lowering costs of broad band
 Internet connections (xDSL) and also because of the reduction of
 available IPv4 addresses, many companies are connected to the Internet
 24 hours on 24 and with few (sometimes not even a power of 2) IP
 addresses. In these situations it is often desirable to have a firewall
 that filters incoming and outgoing traffic from and towards Internet,
 but a packet filtering solution based on router may not be applicable,
 either due to subnetting issues, the router is owned by the connectivity
 supplier (ISP), or because it does not support such
 functionalities. In these scenarios the use of a filtering bridge is
 highly advised.
A bridge-based firewall can be configured and inserted between the
 xDSL router and your Ethernet hub/switch without any IP numbering
 issues.
2. How to Install
Adding bridge functionalities to a FreeBSD system is not difficult.
 Since 4.5 release it is possible to load such functionalities as modules
 instead of having to rebuild the kernel, simplifying the procedure a
 great deal. In the following subsections I will explain both
 installation ways.
Important:
Do not follow both instructions: a procedure
	excludes the other one. Select the best choice
	according to your needs and abilities.

Before going on, be sure to have at least two Ethernet cards that
 support the promiscuous mode for both reception and transmission, since
 they must be able to send Ethernet packets with any address, not just
 their own. Moreover, to have a good throughput, the cards should be PCI
 bus mastering cards. The best choices are still the Intel EtherExpress™
 Pro, followed by the 3Com® 3c9xx series. To simplify the firewall
 configuration it may be useful to have two cards of different
 manufacturers (using different drivers) in order to distinguish clearly
 which interface is connected to the router and which to the inner
 network.
2.1. Kernel Configuration
So you have decided to use the older but well tested installation
	method. To begin, you have to add the following rows to your kernel
	configuration file:
options BRIDGE
options IPFIREWALL
options IPFIREWALL_VERBOSE
The first line is to compile the bridge support, the second one is
	the firewall and the third one is the logging functions of the
	firewall.
Now it is necessary to build and install the new kernel. You may
	find detailed instructions in the Building
	and Installing a Custom Kernel section of the FreeBSD
	Handbook.
2.2. Modules Loading
If you have chosen to use the new and simpler installation
	method, the only thing to do now is add the following row to
 /boot/loader.conf:
bridge_load="YES"
In this way, during the system startup, the
	bridge.ko module will be loaded together with the
	kernel. It is not required to add a similar row for the
	ipfw.ko module, since it will be loaded
	automatically after the execution of the steps in the following
	section.
3. Final Preparation
Before rebooting in order to load the new kernel or the required
 modules (according to the previously chosen installation method), you
 have to make some changes to the /etc/rc.conf
 configuration file. The default rule of the firewall is to reject all IP
 packets. Initially we will set up an open firewall, in order to verify
 its operation without any issue related to packet filtering (in case you
 are going to execute this procedure remotely, such configuration will
 avoid you to remain isolated from the network). Put these lines in
 /etc/rc.conf:
firewall_enable="YES"
firewall_type="open"
firewall_quiet="YES"
firewall_logging="YES"
The first row will enable the firewall (and will load the module
 ipfw.ko if it is not compiled in the kernel), the
 second one to set up it in open mode (as explained in
 /etc/rc.firewall), the third one to not show rules
 loading and the fourth one to enable logging support.
About the configuration of the network interfaces, the most used way
 is to assign an IP to only one of the network cards, but the bridge will
 work equally even if both interfaces or none has a configured IP. In the
 last case (IP-less) the bridge machine will be still more hidden, as
 inaccessible from the network: to configure it, you have to login from
 console or through a third network interface separated from the bridge.
 Sometimes, during the system startup, some programs require network
 access, say for domain resolution: in this case it is necessary to
 assign an IP to the external interface (the one connected to Internet,
 where DNS server resides), since the bridge will be
 activated at the end of the startup procedure. It means that the
 fxp0 interface (in our case) must be mentioned
 in the ifconfig section of the /etc/rc.conf file,
 while the xl0 is not. Assigning an IP to both
 the network cards does not make much sense, unless, during the start
 procedure, applications should access to services on both Ethernet
 segments.
There is another important thing to know. When running IP over
 Ethernet, there are actually two Ethernet protocols in use: one is IP,
 the other is ARP. ARP does the
 conversion of the IP address of a host into its Ethernet address
 (MAC layer). In order to allow the communication
 between two hosts separated by the bridge, it is necessary that the
 bridge will forward ARP packets. Such protocol is not
 included in the IP layer, since it exists only with IP over Ethernet.
 The FreeBSD firewall filters exclusively on the IP layer and therefore
 all non-IP packets (ARP included) will be forwarded
 without being filtered, even if the firewall is configured to not permit
 anything.
Now it is time to reboot the system and use it as before: there will
 be some new messages about the bridge and the firewall, but the bridge
 will not be activated and the firewall, being in open mode, will not
 avoid any operations.
If there are any problems, you should sort them out now
 before proceeding.
4. Enabling the Bridge
At this point, to enable the bridge, you have to execute the
 following commands (having the shrewdness to replace the names of the
 two network interfaces fxp0 and
 xl0 with your own ones):
sysctl net.link.ether.bridge.config=fxp0:0,xl0:0
sysctl net.link.ether.bridge.ipfw=1
sysctl net.link.ether.bridge.enable=1
The first row specifies which interfaces should be activated by the
 bridge, the second one will enable the firewall on the bridge and
 finally the third one will enable the bridge.
Note:
If you have FreeBSD 5.1-RELEASE or previous the sysctl variables
	are spelled differently. See bridge(4) for details.

At this point you should be able to insert the machine between two
 sets of hosts without compromising any communication abilities between
 them. If so, the next step is to add the
 net.link.ether.bridge.[blah]=[blah]
 portions of these rows to the /etc/sysctl.conf
 file, in order to have them execute at startup.
5. Configuring The Firewall
Now it is time to create your own file with custom firewall rules,
 in order to secure the inside network. There will be some complication
 in doing this because not all of the firewall functionalities are
 available on bridged packets. Furthermore, there is a difference between
 the packets that are in the process of being forwarded and packets that
 are being received by the local machine. In general, incoming packets
 are run through the firewall only once, not twice as is normally the
 case; in fact they are filtered only upon receipt, so rules that use
 out or xmit will never match. Personally, I use in via which is an
 older syntax, but one that has a sense when you read it. Another
 limitation is that you are restricted to use only pass or drop
 commands for packets filtered by a bridge. Sophisticated things like
 divert, forward or reject are not available. Such options can
 still be used, but only on traffic to or from the bridge machine itself
 (if it has an IP address).
New in FreeBSD 4.0, is the concept of stateful filtering. This is a
 big improvement for UDP traffic, which typically is a
 request going out, followed shortly thereafter by a response with the
 exact same set of IP addresses and port numbers (but with source and
 destination reversed, of course). For firewalls that have no
 statekeeping, there is almost no way to deal with this sort of traffic
 as a single session. But with a firewall that can “remember” an outgoing
 UDP packet and, for the next few minutes, allow a
 response, handling UDP services is trivial. The
 following example shows how to do it. It is possible to do the same thing
 with TCP packets. This allows you to avoid some
 denial of service attacks and other nasty tricks, but it also typically
 makes your state table grow quickly in size.
Let's look at an example setup. Note first that at the top of
 /etc/rc.firewall there are already standard rules
 for the loopback interface lo0, so we should not
 have to care for them anymore. Custom rules should be put in a separate
 file (say /etc/rc.firewall.local) and loaded at
 system startup, by modifying the row of
 /etc/rc.conf where we defined the open
 firewall:
firewall_type="/etc/rc.firewall.local"
Important:
You have to specify the full path, otherwise
	it will not be loaded with the risk to remain isolated from the
	network.

For our example imagine to have the fxp0
 interface connected towards the outside (Internet) and the
 xl0 towards the inside
 (LAN). The bridge machine has the IP 1.2.3.4 (it is not possible that your
 ISP can give you an address quite like this, but for
 our example it is good).
Things that we have kept state on before get to go through in a hurry
add check-state

Throw away RFC 1918 networks
add drop all from 10.0.0.0/8 to any in via fxp0
add drop all from 172.16.0.0/12 to any in via fxp0
add drop all from 192.168.0.0/16 to any in via fxp0

Allow the bridge machine to say anything it wants
(if the machine is IP-less do not include these rows)
add pass tcp from 1.2.3.4 to any setup keep-state
add pass udp from 1.2.3.4 to any keep-state
add pass ip from 1.2.3.4 to any

Allow the inside hosts to say anything they want
add pass tcp from any to any in via xl0 setup keep-state
add pass udp from any to any in via xl0 keep-state
add pass ip from any to any in via xl0

TCP section
Allow SSH
add pass tcp from any to any 22 in via fxp0 setup keep-state
Allow SMTP only towards the mail server
add pass tcp from any to relay 25 in via fxp0 setup keep-state
Allow zone transfers only by the slave name server [dns2.nic.it]
add pass tcp from 193.205.245.8 to ns 53 in via fxp0 setup keep-state
Pass ident probes. It is better than waiting for them to timeout
add pass tcp from any to any 113 in via fxp0 setup keep-state
Pass the "quarantine" range
add pass tcp from any to any 49152-65535 in via fxp0 setup keep-state

UDP section
Allow DNS only towards the name server
add pass udp from any to ns 53 in via fxp0 keep-state
Pass the "quarantine" range
add pass udp from any to any 49152-65535 in via fxp0 keep-state

ICMP section
Pass 'ping'
add pass icmp from any to any icmptypes 8 keep-state
Pass error messages generated by 'traceroute'
add pass icmp from any to any icmptypes 3
add pass icmp from any to any icmptypes 11

Everything else is suspect
add drop log all from any to any
Those of you who have set up firewalls before may notice some things
 missing. In particular, there are no anti-spoofing rules, in fact we did
 not add:
add deny all from 1.2.3.4/8 to any in via fxp0
That is, drop packets that are coming in from the outside claiming
 to be from our network. This is something that you would commonly do to
 be sure that someone does not try to evade the packet filter, by
 generating nefarious packets that look like they are from the inside.
 The problem with that is that there is at least one
 host on the outside interface that you do not want to ignore: the
 router. But usually, the ISP anti-spoofs at their
 router, so we do not need to bother that much.
The last rule seems to be an exact duplicate of the default rule,
 that is, do not let anything pass that is not specifically allowed. But
 there is a difference: all suspected traffic will be logged.
There are two rules for passing SMTP and
 DNS traffic towards the mail server and the name
 server, if you have them. Obviously the whole rule set should be
 flavored to personal taste, this is only a specific example (rule format
 is described accurately in the ipfw(8) man page). Note that in
 order for “relay” and “ns” to work, name service lookups must work
 before the bridge is enabled. This is an example of
 making sure that you set the IP on the correct network card.
 Alternatively it is possible to specify the IP address instead of the
 host name (required if the machine is IP-less).
People that are used to setting up firewalls are probably also used
 to either having a reset or a forward rule for ident packets
 (TCP port 113). Unfortunately, this is not an
 applicable option with the bridge, so the best thing is to simply pass
 them to their destination. As long as that destination machine is not
 running an ident daemon, this is relatively harmless. The alternative is
 dropping connections on port 113, which creates some problems with
 services like IRC (the ident probe must
 timeout).
The only other thing that is a little weird that you may have
 noticed is that there is a rule to let the bridge machine speak, and
 another for internal hosts. Remember that this is because the two sets
 of traffic will take different paths through the kernel and into the
 packet filter. The inside net will go through the bridge, while the
 local machine will use the normal IP stack to speak. Thus the two rules
 to handle the different cases. The in via
 fxp0 rules work for both paths. In general, if
 you use in via rules throughout the filter, you will need to make an
 exception for locally generated packets, because they did not come in
 via any of our interfaces.
6. Contributors
Many parts of this article have been taken, updated and adapted from
 an old text about bridging, edited by Nick Sayer. A pair of inspirations
 are due to an introduction on bridging by Steve Peterson.
A big thanks to Luigi Rizzo for the implementation of the bridge
 code in FreeBSD and for the time he has dedicated to me answering all of
 my related questions.
A thanks goes out also to Tom Rhodes who looked over my job of
 translation from Italian (the original language of this article) into
 English.
OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

3Com and HomeConnect are registered
 trademarks of 3Com Corporation.

Intel, Celeron, Centrino, Core, EtherExpress, i386,
 i486, Itanium, Pentium, and Xeon are trademarks or registered
 trademarks of Intel Corporation or its subsidiaries in the United
 States and other countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

