
FreeBSD Release Engineering

Glen Barber, The FreeBSD Foundation <gjb@FreeBSD.org>
FreeBSD is a registered trademark of the FreeBSD Foundation.

Intel, Celeron, Centrino, Core, EtherExpress, i386, i486, Itanium, Pentium, and Xeon are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this document, and the FreeBSD
Project was aware of the trademark claim, the designations have been followed by the “™” or
the “®” symbol.

2017-10-09 15:42:45 by gjb.

Abstract
This article describes the release engineering process of the FreeBSD Project.

Table of Contents
1. Introduction to the FreeBSD Release Engineering Process . 1
2. General Information and Preparation . 2
3. Release Engineering Terminology . 4
4. Website Changes During the Release Cycle . 5
5. Release from head/ . 6
6. Release from stable/ . 7
7. Building FreeBSD Installation Media . 9
8. Publishing FreeBSD Installation Media to Project Mirrors . 11
9. Wrapping up the Release Cycle . 12

1. Introduction to the FreeBSD Release Engineering Process
Development of FreeBSD has a very specific workflow. In general, all changes to the FreeBSD base system are
committed to the head/ branch, which reflects the top of the source tree.

After a reasonable testing period, changes can then be merged to the stable/ branches. The default minimum
timeframe before merging to stable/ branches is three (3) days.

Although a general rule to wait a minimum of three days before merging from head/ , there are a few special
circumstances where an immediate merge may be necessary, such as a critical security x, or a bug x that directly
inhibits the release build process.

After several months, and the number of changes in the stable/ branch have grown significantly, it is time to
release the next version of FreeBSD. These releases have been historically referred to as “point” releases.

In between releases from the stable/ branches, approximately every two (2) years, a release will be cut directly
from head/ . These releases have been historically referred to as “dot-zero” releases.

This article will highlight the workflow and responsibilities of the FreeBSD Release Engineering Team for both
“dot-zero” and “point”' releases.

https://www.freebsdfoundation.org
mailto:gjb@FreeBSD.org

General Information and Preparation

The following sections of this article describe:

Section 2, “General Information and Preparation”
General information and preparation before starting the release cycle.

Section 4, “Website Changes During the Release Cycle”
Website Changes During the Release Cycle

Section 3, “Release Engineering Terminology”
Terminology and general information, such as the “code slush” and “code freeze”, used throughout this doc-
ument.

Section 5, “Release from head/”
The Release Engineering process for a “dot-zero” release.

Section 6, “Release from stable/”
The Release Engineering process for a “point” release.

Section 7, “Building FreeBSD Installation Media”
Information related to the specific procedures to build installation medium.

Section 8, “Publishing FreeBSD Installation Media to Project Mirrors”
Procedures to publish installation medium.

Section 9, “Wrapping up the Release Cycle”
Wrapping up the release cycle.

2. General Information and Preparation
Approximately two months before the start of the release cycle, the FreeBSD Release Engineering Team decides on
a schedule for the release. The schedule includes the various milestone points of the release cycle, such as freeze
dates, branch dates, and build dates. For example:

Milestone Anticipated Date

head/ slush: May 27, 2016

head/ freeze: June 10, 2016

head/ KBI freeze: June 24, 2016

doc/ tree slush [1]: June 24, 2016

Ports quarterly branch [2]: July 1, 2016

stable/11/ branch: July 8, 2016

doc/ tree tag [3]: July 8, 2016

BETA1 build starts: July 8, 2016

head/ thaw: July 9, 2016

BETA2 build starts: July 15, 2016

BETA3 build starts [*]: July 22, 2016

releng/11.0/ branch: July 29, 2016

RC1 build starts: July 29, 2016

stable/11/ thaw: July 30, 2016

RC2 build starts: August 5, 2016

Final Ports package builds [4]: August 6, 2016

2

FreeBSD Release Engineering

Milestone Anticipated Date

Ports release tag: August 12, 2016

RC3 build starts [*]: August 12, 2016

RELEASE build starts: August 19, 2016

RELEASE announcement: September 2, 2016

Note
Items marked with "[*]" are "as needed".

1. The doc/ tree slush is coordinated by the FreeBSD Documentation Engineering Team.

2. The Ports quarterly branch used is determined by when the final RC build is planned. A new quarterly branch is
created on the rst day of the quarter, so this metric should be used when taking the release cycle milestones
into account. The quarterly branch is created by the FreeBSD Ports Management Team.

3. The doc/ tree is tagged by the FreeBSD Documentation Engineering Team.

4. The final Ports package build is done by the FreeBSD Ports Management Team after the final (or what is expected
to be final) RC build.

Note
If the release is being created from an existing stable/ branch, the KBI freeze date can be
excluded, since the KBI is already considered frozen on established stable/ branches.

When writing the release cycle schedule, a number of things need to be taken into consideration, in particular
milestones where the target date depends on predefined milestones upon which there is a dependency. For exam-
ple, the Ports Collection release tag originates from the active quarterly branch at the time of the last RC. This in
part defines which quarterly branch is used, when the release tag can happen, and what revision of the ports tree
is used for the final RELEASE build.

After general agreement on the schedule, the FreeBSD Release Engineering Team emails the schedule to the Free-
BSD Developers.

It is somewhat typical that many developers will inform the FreeBSD Release Engineering Team about various
works-in-progress. In some cases, an extension for the in-progress work will be requested, and in other cases, a
request for “blanket approval” to a particular subset of the tree will be made.

When such requests are made, it is important to make sure timelines (even if estimated) are discussed. For blanket
approvals, the length of time for the blanket approval should be made clear. For example, a FreeBSD developer
may request blanket approvals from the start of the code slush until the start of the RC builds.

Note
In order to keep track of blanket approvals, the FreeBSD Release Engineering Team uses an
internal repository to keep a running log of such requests, which defines the area upon which
a blanket approval was granted, the author(s), when the blanket approval expires, and the
reason the approval was granted. One example of this is granting blanket approval to re-

3

Release Engineering Terminology

lease/doc/ to all FreeBSD Release Engineering Team members until the final RC to update
the release notes and other release-related documentation.

Note
The FreeBSD Release Engineering Team also uses this repository to track pending approval
requests that are received just prior to starting various builds during the release cycle, which
the Release Engineer specifies the cutoff period with an email to the FreeBSD developers.

Depending on the underlying set of code in question, and the overall impact the set of code has on FreeBSD as a
whole, such requests may be approved or denied by the FreeBSD Release Engineering Team.

The same applies to work-in-progress extensions. For example, in-progress work for a new device driver that is
otherwise isolated from the rest of the tree may be granted an extension. A new scheduler, however, may not be
feasible, especially if such dramatic changes do not exist in another branch.

The schedule is also added to the Project website, in the doc/ repository, in head/en_US.ISO8859-1/htdocs/re-
leases/11.0R/schedule.xml. This le is continuously updated as the release cycle progresses.

Note
In most cases, the schedule.xml can be copied from a prior release and updated accordingly.

In addition to adding schedule.xml to the website, head/share/xml/navibar.ent and head/share/xml/re-
lease.ent are also updated to add the link to the schedule to various subpages, as well as enabling the link to the
schedule on the Project website index page.

The schedule is also linked from head/en_US.ISO8859-1/htdocs/releng/index.xml .

Approximately one month prior to the scheduled “code slush”, the FreeBSD Release Engineering Team sends a
reminder email to the FreeBSD Developers.

Once the rst builds of the release cycle are available, update the beta.local.where entity in head/
en_US.ISO8859-1/htdocs/releases/ 11.0R/schedule.xml. replacing IGNORE with INCLUDE.

Note
If two parallel release cycles are happening at once, the beta2.local.where entity may be
used instead.

3. Release Engineering Terminology
This section describes some of the terminology used throughout the rest of this document.

3.1. The Code Slush

Although the code slush is not a hard freeze on the tree, the FreeBSD Release Engineering Team requests that bugs
in the existing code base take priority over new features.

4

FreeBSD Release Engineering

The code slush does not enforce commit approvals to the branch.

3.2. The Code Freeze

The code freeze marks the point in time where all commits to the branch require explicit approval from the FreeBSD
Release Engineering Team.

The FreeBSD Subversion repository contains several hooks to perform sanity checks before any commit is actually
committed to the tree. One of these hooks will evaluate if committing to a particular branch requires specific
approval.

To enforce commit approvals by the FreeBSD Release Engineering Team, the Release Engineer updates base/sv-
nadmin/conf/approvers , and commits the change back to the repository. Once this is done, any change to the
branch must include an “Approved by:” line in the commit message.

The “Approved by:” line must match the second column in base/svnadmin/conf/approvers , otherwise the com-
mit will be rejected by the repository hooks.

Note

During the code freeze, FreeBSD committers are urged to follow the Change Request Guide-
lines.

3.3. The KBI/KPI Freeze

KBI/KPI stability implies that the caller of a function across two different releases of software that implement the
function results in the same end state. The caller, whether it is a process, thread, or function, expects the function
to operate in a certain way, otherwise the KBI/KPI stability on the branch is broken.

4. Website Changes During the Release Cycle
This section describes the changes to the website that should occur as the release cycle progresses.

Note

The les specified throughout this section are relative to the head/ branch of the doc repos-
itory in Subversion.

4.1. Website Changes Before the Release Cycle Begins

When the release cycle schedule is available, these les need to be updated to enable various different functional-
ities on the FreeBSD Project website:

File to Edit What to Change

share/xml/release.ent Change beta.upcoming from IGNORE to INCLUDE

share/xml/release.ent Change % beta.upcoming from IGNORE to INCLUDE

share/xml/release.ent Change beta.testing from IGNORE to INCLUDE

share/xml/release.ent Change % beta.testing from IGNORE to INCLUDE

5

https://wiki.freebsd.org/Releng/ChangeRequestGuidelines
https://wiki.freebsd.org/Releng/ChangeRequestGuidelines

Website Changes During BETA or RC

4.2. Website Changes During BETA or RC

When transitioning from PRERELEASE to BETA, these les need to be updated to enable the "Help Test" block on the
download page. All les are relative to head/ in the doc repository:

File to Edit What to Change

en_US.ISO8859-1/
htdocs/releases/11.0R/schedule.xml

Change % beta.local.where IGNORE to INCLUDE

share/xml/release.ent Update % betarel.vers to BETA1

share/xml/news.xml Add an entry announcing the BETA

Once the releng/11.0/ branch is created, the various release-related documents need to be generated and man-
ually added to the doc/ repository.

Within release/doc, invoke make(1) to generate errata.html, hardware.html, readme.html , and relnotes.html
pages, which are then added to doc/head/en_US.ISO8859-1/htdocs/releases/ X.YR/, where X.Y represents the
major and minor version number of the release.

The fbsd:nokeywords must be set to on on the newly-added les before the pre-commit hooks will allow them to
be added to the repository.

4.3. Ports Changes During BETA, RC, and the Final RELEASE

For each build during the release cycle, the MANIFEST les containing the SHA256 of the various distribution sets,
such as base.txz , kernel.txz, and so on, are added to the misc/freebsd-release-manifests port. This allows util-
ities other than bsdinstall(8), such as ports-mgmt/poudriere, to safely use these distribution sets by providing a
mechanism through which the checksums can be verified.

5. Release from head/
This section describes the general procedures of the FreeBSD release cycle from the head/ branch.

5.1. FreeBSD “ALPHA” Builds

Starting with the FreeBSD 10.0-RELEASE cycle, the notion of “ALPHA” builds was introduced. Unlike the BETA and
RC builds, ALPHA builds are not included in the FreeBSD Release schedule.

The idea behind ALPHA builds is to provide regular FreeBSD-provided builds before the creation of the stable/
branch.

FreeBSD ALPHA snapshots should be built approximately once a week.

For the rst ALPHA build, the BRANCH value in sys/conf/newvers.sh needs to be changed from CURRENT to ALPHA1.
For subsequent ALPHA builds, increment each ALPHAN value by one.

See Section 7, “Building FreeBSD Installation Media” for information on building the ALPHA images.

5.2. Creating the stable/11/ Branch

When creating the stable/ branch, several changes are required in both the new stable/ branch and the head/
branch. The les listed are relative to the repository root. To create the new stable/11/ branch in Subversion:

% svn cp ^/head stable/ 11/

Once the stable/11/ branch has been committed, make the following edits:

6

https://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports
https://www.freebsd.org/cgi/url.cgi?ports/misc/freebsd-release-manifests/pkg-descr
https://www.FreeBSD.org/cgi/man.cgi?query=bsdinstall&sektion=8&manpath=freebsd-release-ports
https://www.freebsd.org/cgi/url.cgi?ports/ports-mgmt/poudriere/pkg-descr

FreeBSD Release Engineering

File to Edit What to Change

stable/11/UPDATING Update the FreeBSD version, and remove the notice
about WITNESS

stable/11/
contrib/jemalloc/include/jemalloc/jemal-
loc_FreeBSD.h

#ifndef MALLOC_PRODUCTION
#define MALLOC_PRODUCTION
#endif

stable/11/sys/*/conf/GENERIC* Remove debugging support

stable/11/release/release.conf.sample Update SRCBRANCH

stable/11/sys/*/conf/GENERIC-NODEBUG Remove these kernel configurations

stable/11/sys/conf/newvers.sh Update the BRANCH value to reflect BETA1

Then in the head/ branch, which will now become a new major version:

File to Edit What to Change

head/UPDATING Update the FreeBSD version

head/gnu/usr.bin/groff/tmac/mdoc.local.in Add the new FreeBSD version

head/sys/conf/newvers.sh Update the BRANCH value to reflect CURRENT, and incre-
ment REVISION

head/Makefile.inc1 Update TARGET_TRIPLE

head/sys/sys/param.h Update __FreeBSD_version

head/contrib/llvm/tools/clang/lib/
Basic/Targets.cpp

Update __FreeBSD_cc_version

head/gnu/usr.bin/cc/cc_tools/freebsd-native.h Update FBSD_MAJOR and FBSD_CC_VER

head/contrib/gcc/config.gcc Append the freebsd<version>.h section

head/release/Makefile Remove the debug.witness.trace entries

head/release/doc/en_US.ISO8859-1/readme/
article.xml

Replace &a.current; with &a.stable;

head/lib/clang/clang.build.mk Uncomment -DNDEBUG

head/lib/clang/freebsd_cc_version.h Update FREEBSD_CC_VERSION

6. Release from stable/
This section describes the general procedures of the FreeBSD release cycle from an extablished stable/ branch.

6.1. FreeBSD stable Branch Code Slush

In preparation for the code freeze on a stable branch, several les need to be updated to reflect the release cycle
is officially in progress. These les are all relative to the top-most level of the stable branch:

File to Edit What to Change

gnu/usr.bin/groff/tmac/mdoc.local.in Add the new FreeBSD version

sys/conf/newvers.sh Update the BRANCH value to reflect PRERELEASE

Makefile.inc1 Update TARGET_TRIPLE

6.2. FreeBSD BETA Builds

Following the code slush, the next phase of the release cycle is the code freeze. This is the point at which all commits
to the stable branch require explicit approval from the FreeBSD Release Engineering Team. This is enforced by

7

Creating the releng/11.0/ Branch

pre-commit hooks in the Subversion repository by editing base/svnadmin/conf/approvers to include a regular
expression matching the stable/11/ branch for the release:

^/stable/ 11/ re

Note

There are two general exceptions to requiring commit approval during the release cycle. The
rst is any change that needs to be committed by the Release Engineer in order to proceed
with the day-to-day workflow of the release cycle, the other is security fixes that may occur
during the release cycle.

Once the code freeze is in effect, the next build from the branch is labeled BETA1. This is done by updating the
BRANCH value in sys/conf/newvers.sh from PRERELEASE to BETA1.

Once this is done, the rst set of BETA builds are started. Subsequent BETA builds do not require updates to any les
other than sys/conf/newvers.sh , incrementing the BETA build number.

6.3. Creating the releng/11.0/ Branch

When the rst RC (Release Candidate) build is ready to begin, the releng/ branch is created. This is a multi-step
process that must be done in a specific order, in order to avoid anomalies such as overlaps with __FreeBSD_version
values, for example. The paths listed below are relative to the repository root. The order of commits and what to
change are:

% svn cp ^/stable/ 11/ releng/ 11.0/

File to Edit What to Change

releng/11.0/sys/conf/newvers.sh Change BETAX to RC1

releng/11.0/sys/sys/param.h Update __FreeBSD_version

releng/11.0/etc/pkg/FreeBSD.conf Replace latest with quarterly as the default package
repository location

releng/11.0/release/pkg_repos/release-dvd.conf Replace latest with quarterly as the default package
repository location

stable/11/sys/conf/newvers.sh Update BETAX with PRERELEASE

stable/11/sys/sys/param.h Update __FreeBSD_version

svnadmin/conf/approvers Add a new approvers line for the releng branch as was
done for the stable branch

% svn propdel -R svn:mergeinfo releng/ 11.0/
% svn commit releng/ 11.0/
% svn commit stable/ 11/

Now that two new __FreeBSD_version values exist, also update head/en_US.ISO8859-1/books/porters-hand-
book/versions/chapter.xml in the Documentation Project repository.

After the rst RC build has completed and tested, the stable/ branch can be “thawed” by removing (or comment-
ing) the ^/stable/11/ entry in svnadmin/conf/approvers .

Following the availability of the rst RC, FreeBSD Bugmeister Team should be emailed to add the new FreeBSD -
RELEASE to the versions available in the drop-down menu shown in the bug tracker.

8

FreeBSD Release Engineering

7. Building FreeBSD Installation Media
This section describes the general procedures producing FreeBSD development snapshots and releases.

7.1. Release Build Scripts

This section describes the build scripts used by FreeBSD Release Engineering Team to produce development snap-
shots and releases.

7.1.1. The release.sh Script

Prior to FreeBSD 9.0-RELEASE, src/release/Makefile was updated to support bsdinstall(8), and the src/re-
lease/generate-release.sh script was introduced as a wrapper to automate invoking the release(7) targets.

Prior to FreeBSD 9.2-RELEASE, src/release/release.sh was introduced, which heavily based on src/re-
lease/generate-release.sh included support to specify configuration les to override various options and en-
vironment variables. Support for configuration les provided support for cross building each architecture for a
release by specifying a separate configuration le for each invocation.

As a brief example of using src/release/release.sh to build a single release in /scratch :

/bin/sh /usr/src/release/release.sh

As a brief example of using src/release/release.sh to build a single, cross-built release using a different target
directory, create a custom release.conf containing:

release.sh configuration for powerpc/powerpc64
CHROOTDIR="/scratch-powerpc64"
TARGET="powerpc"
TARGET_ARCH="powerpc64"
KERNEL="GENERIC64"

Then invoke src/release/release.sh as:

/bin/sh /usr/src/release/release.sh -c $HOME/release.conf

See release(7) and src/release/release.conf.sample for more details and example usage.

7.1.2. The thermite.sh Wrapper Script

In order to make cross building the full set of architectures supported on a given branch faster, easier, and reduce
human error factors, a wrapper script around src/release/release.sh was written to iterate through the vari-
ous combinations of architectures and invoke src/release/release.sh using a configuration le specific to that
architecture.

The wrapper script is called thermite.sh, which is available in the FreeBSD Subversion repository at svn://
svn.freebsd.org/base/user/gjb/thermite/ , in addition to configuration les used to build head/ and sta-
ble/11/ development snapshots.

Using thermite.sh is covered in Section 7.2, “Building FreeBSD Development Snapshots” and Section 7.3, “Building
FreeBSD Releases”.

Each architecture and individual kernel have their own configuration le used by release.sh. Each branch has
its own defaults-X.conf configuration which contains entries common throughout each architecture, where
overrides or special variables are set and/or overridden in the per-build les.

The per-build configuration le naming scheme is in the form of ${revision}-${TARGET_ARCH}-${KERN-
CONF}-${type}.conf , where the uppercase variables are equivalent to what make(1) uses in the build system, and
lowercase variables are set within the configuration les, mapping to the major version of the respective branch.

9

https://www.FreeBSD.org/cgi/man.cgi?query=bsdinstall&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=release&sektion=7&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=release&sektion=7&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1&manpath=freebsd-release-ports

Building FreeBSD Development Snapshots

Each branch also has its own builds-X.conf configuration, which is used by thermite.sh. The thermite.sh script
iterates through each ${revision}, ${TARGET_ARCH}, ${KERNCONF}, and ${type} value, creating a master list of
what to build. However, a given combination from the list will only be built if the respective configuration le
exists, which is where the naming scheme above is relevant.

There are two paths of le sourcing:

• builds- 11.conf -> main.conf

This controls thermite.sh behavior

• 11-amd64-GENERIC-snap.conf -> defaults-11.conf -> main.conf

This controls release/release.sh behavior within the build chroot(8)

Note
The builds- 11.conf , defaults-11.conf , and main.conf configuration les exist to reduce
repetition between the various per-build les.

7.2. Building FreeBSD Development Snapshots

The official release build machines have a specific filesystem layout, which using ZFS, thermite.sh takes heavy
advantage of with clones and snapshots, ensuring a pristine build environment.

The build scripts reside in /releng/scripts-snapshot/scripts or /releng/scripts-release/scripts respect-
fully, to avoid collisions between an RC build from a releng branch versus a STABLE snapshot from the respective
stable branch.

A separate dataset exists for the final build images, /snap/ftp . This directory contains both snapshots and releases
directories. They are only used if the EVERYTHINGISFINE variable is defined in main.conf .

Note
The EVERYTHINGISFINE variable name was chosen to avoid colliding with a variable that
might be possibly set in the user environment, accidentally enabling the behavior that de-
pends on it being defined.

As thermite.sh iterates through the master list of combinations and locates the per-build configuration le, a ZFS
dataset is created under /releng, such as /releng/12-amd64-GENERIC-snap . The src/, ports/ , and doc/ trees
are checked out to separate ZFS datasets, such as /releng/12-src-snap , which are then cloned and mounted into
the respective build datasets. This is done to avoid checking out a given tree more than once.

Assuming these filesystem paths, thermite.sh would be invoked as:

cd /releng/scripts-snapshot/scripts
./setrev.sh -b stable/ 11/
./zfs-setup.sh -c ./builds- 11.conf
./thermite.sh -c ./builds- 11.conf

Once the builds have completed, additional helper scripts are available to generate development snapshot emails
which are sent to the freebsd-snapshots@freebsd.org mailing list:

cd /releng/scripts-snapshot/scripts
./get-checksums.sh -c ./builds- 11.conf | ./generate-email.pl > snapshot- 11-mail

10

https://www.FreeBSD.org/cgi/man.cgi?query=chroot&sektion=8&manpath=freebsd-release-ports

FreeBSD Release Engineering

Note
The generated output should be double-checked for correctness, and the email itself should
be PGP signed, in-line.

Note
These helper scripts only apply to development snapshot builds. Announcements during the
release cycle (excluding the final release announcement) are created from an email template.
A sample of the email template currently used can be found here.

7.3. Building FreeBSD Releases

Similar to building FreeBSD development snapshots, thermite.sh would be invoked the same way. The difference
between development snapshots and release builds, BETA and RC included, is that the chroot(8) configuration les
must be named with release instead of snap as the "type", as mentioned above.

In addition, the BUILDTYPE and types must be changed from snap to release in defaults-11.conf and builds-
11.conf , respectively.

When building BETA, RC, and the final RELEASE, also statically set BUILDSVNREV to the revision on the branch re-
flecting the name change, BUILDDATE to the date the builds are started in YYYYMMDD format. If the doc/ and ports/
trees have been tagged, also set PORTBRANCH and DOCBRANCH to the relevant tag path in the Subversion repository,
replacing HEAD with the last changed revision. Also set releasesrc in builds- 11.conf to the relevant branch,
such as stable/11/ or releng/11.0/.

During the release cycle, a copy of CHECKSUM.SHA512 and CHECKSUM.SHA256 for each architecture are stored in
the FreeBSD Release Engineering Team internal repository in addition to being included in the various announce-
ment emails. Each MANIFEST containing the hashes of base.txz , kernel.txz, etc. are added to misc/freebsd-re-
lease-manifests in the Ports Collection, as well.

After building the final RELEASE, the releng/11.0/ branch is tagged as release/11.0.0/ using the revision from
which the RELEASE was built. Similar to creating the stable/11/ and releng/11.0/ branches, this is done with
svn cp. From the repository root:

% svn cp ^/releng/ 11.0/@r306420 release/ 11.0.0/
% svn commit release/ 11.0.0/

8. Publishing FreeBSD Installation Media to Project Mirrors
This section describes the procedure to publish FreeBSD development snapshots and releases to the Project mir-
rors.

8.1. Staging FreeBSD Installation Media Images

Staging FreeBSD snapshots and releases is a two part process:

• Creating the directory structure to match the hierarchy on ftp-master

If EVERYTHINGISFINE is defined in the build configuration les, main.conf in the case of the build scripts ref-
erenced above, this happens automatically in the chroot(8) after the build is complete, creating the directory

11

https://svn.freebsd.org/base/user/gjb/thermite/non-release-template-mail.txt
https://www.FreeBSD.org/cgi/man.cgi?query=chroot&sektion=8&manpath=freebsd-release-ports
https://www.freebsd.org/cgi/url.cgi?ports/misc/freebsd-release-manifests/pkg-descr
https://www.freebsd.org/cgi/url.cgi?ports/misc/freebsd-release-manifests/pkg-descr
https://www.FreeBSD.org/cgi/man.cgi?query=chroot&sektion=8&manpath=freebsd-release-ports

Publishing FreeBSD Installation Media

structure in ${DESTDIR}/R/ftp-stage with a path structure matching what is expected on ftp-master . This is
equivalent to running the following in the chroot(8) directly:

make -C /usr/src/release -f Makefile.mirrors EVERYTHINGISFINE=1 ftp-stage

After each architecture is built, thermite.sh will rsync the ${DESTDIR}/R/ftp-stage from the build chroot(8)
to /snap/ftp/snapshots or /snap/ftp/releases on the build host, respectively.

• Copying the les to a staging directory on ftp-master before moving the les into pub/ to begin propagation
to the Project mirrors

Once all builds have finished, /snap/ftp/snapshots , or /snap/ftp/releases for a release, is polled by ftp-
master using rsync to /archive/tmp/snapshots or /archive/tmp/releases , respectively.

Note
On ftp-master in the FreeBSD Project infrastructure, this step requires root level access,
as this step must be executed as the archive user.

8.2. Publishing FreeBSD Installation Media

Once the images are staged in /archive/tmp/ , they are ready to be made public by putting them in /archive/
pub/FreeBSD . In order to reduce propagation time, pax(1) is used to create hard links from /archive/tmp to /
archive/pub/FreeBSD .

Note
In order for this to be effective, both /archive/tmp and /archive/pub must reside on the
same logical filesystem.

There is a caveat, however, where rsync must be used after pax(1) in order to correct the symbolic links in pub/
FreeBSD/snapshots/ISO-IMAGES which pax(1) will replace with a hard link, increasing the propagation time.

Note
As with the staging steps, this requires root level access, as this step must be executed as
the archive user.

As the archive user:

% cd /archive/tmp/ snapshots
% pax -r -w -l . /archive/pub/FreeBSD/ snapshots
% /usr/local/bin/rsync -avH /archive/tmp/ snapshots /* /archive/pub/FreeBSD/ snapshots /

Replace snapshots with releases as appropriate.

9. Wrapping up the Release Cycle
This section describes general post-release tasks.

12

https://www.FreeBSD.org/cgi/man.cgi?query=chroot&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=chroot&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=pax&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=pax&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=pax&sektion=1&manpath=freebsd-release-ports

FreeBSD Release Engineering

9.1. Post-Release Errata Notices

As the release cycle approaches conclusion, it is common to have several EN (Errata Notice) candidates to address
issues that were discovered late in the cycle. Following the release, the FreeBSD Release Engineering Team and the
FreeBSD Security Team revisit changes that were not approved prior to the final release, and depending on the
scope of the change in question, may issue an EN.

Note
The actual process of issuing ENs is handled by the FreeBSD Security Team.

9.2. Handoff to the FreeBSD Security Team

Roughly two weeks following the release, the Release Engineer updates svnadmin/conf/approvers changing the
approver column from re to (so|security-officer) for the releng/11.0/ branch.

13

	FreeBSD Release Engineering
	Table of Contents
	1. Introduction to the FreeBSD Release Engineering Process
	2. General Information and Preparation
	3. Release Engineering Terminology
	3.1. The Code Slush
	3.2. The Code Freeze
	3.3. The KBI/KPI Freeze

	4. Website Changes During the Release Cycle
	4.1. Website Changes Before the Release Cycle Begins
	4.2. Website Changes During BETA or RC
	4.3. Ports Changes During BETA, RC, and the Final RELEASE

	5. Release from head/
	5.1. FreeBSD “ALPHA” Builds
	5.2. Creating the stable/11/ Branch

	6. Release from stable/
	6.1. FreeBSD stable Branch Code Slush
	6.2. FreeBSD BETA Builds
	6.3. Creating the releng/11.0/ Branch

	7. Building FreeBSD Installation Media
	7.1. Release Build Scripts
	7.1.1. The release.sh Script
	7.1.2. The thermite.sh Wrapper Script

	7.2. Building FreeBSD Development Snapshots
	7.3. Building FreeBSD Releases

	8. Publishing FreeBSD Installation Media to Project Mirrors
	8.1. Staging FreeBSD Installation Media Images
	8.2. Publishing FreeBSD Installation Media

	9. Wrapping up the Release Cycle
	9.1. Post-Release Errata Notices
	9.2. Handoff to the FreeBSD Security Team

