
Network Working Group J. Rosenberg
Request for Comments: 5627 Cisco Systems
Category: Standards Track October 2009

 Obtaining and Using Globally Routable User Agent URIs (GRUUs)
 in the Session Initiation Protocol (SIP)

Abstract

 Several applications of the Session Initiation Protocol (SIP) require
 a user agent (UA) to construct and distribute a URI that can be used
 by anyone on the Internet to route a call to that specific UA
 instance. A URI that routes to a specific UA instance is called a
 Globally Routable UA URI (GRUU). This document describes an
 extension to SIP for obtaining a GRUU from a registrar and for
 communicating a GRUU to a peer within a dialog.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified

Rosenberg Standards Track [Page 1]

RFC 5627 GRUU Mechanism October 2009

 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Rosenberg Standards Track [Page 2]

RFC 5627 GRUU Mechanism October 2009

Table of Contents

 1. Introduction . 4
 2. Terminology . 5
 3. Overview of Operation . 5
 3.1. Structure of GRUUs . 5
 3.1.1. GRUUs That Expose the Underlying AOR 6
 3.1.2. GRUUs That Hide the Underlying AOR 6
 3.2. Obtaining a GRUU . 7
 3.3. Using a GRUU . 8
 3.4. Dereferencing a GRUU 8
 4. User Agent Behavior . 9
 4.1. Generating a REGISTER Request 9
 4.2. Learning GRUUs from REGISTER Responses 10
 4.3. Constructing a Self-Made GRUU 11
 4.4. Using One’s Own GRUUs 12
 4.4.1. Considerations for Multiple AORs 13
 4.5. Dereferencing a GRUU 14
 4.6. Rendering GRUUs on a User Interface 14
 5. Registrar Behavior . 14
 5.1. Processing a REGISTER Request 14
 5.2. Generating a REGISTER Response 16
 5.3. Timing Out a Registration 16
 5.4. Creation of a GRUU . 17
 5.5. Registration Event Support 19
 6. Proxy Behavior . 19
 6.1. Request Targeting . 19
 6.2. Record-Routing . 21
 7. Grammar . 23
 8. Requirements . 23
 9. Example Call Flow . 24
 10. Security Considerations 29
 10.1. Outside Attacks . 29
 10.2. Inside Attacks . 30
 10.3. Privacy Considerations 31
 11. IANA Considerations . 33
 11.1. Header Field Parameter 33
 11.2. URI Parameter . 33
 11.3. SIP Option Tag . 33
 12. Acknowledgments . 34
 13. References . 34
 13.1. Normative References 34
 13.2. Informative References 35
 Appendix A. Example GRUU Construction Algorithms 37
 A.1. Public GRUU . 37
 A.2. Temporary GRUU . 37
 Appendix B. Network Design Considerations 39

Rosenberg Standards Track [Page 3]

RFC 5627 GRUU Mechanism October 2009

1. Introduction

 In the Session Initiation Protocol (SIP), RFC 3261 [1], the basic
 unit of reference is the Address of Record (AOR). However, in SIP
 systems a single user can have a number of user agents (handsets,
 softphones, voicemail accounts, etc.) that are all referenced by the
 same AOR. There are a number of contexts in which it is desirable to
 have an identifier that addresses a single user agent rather than the
 group of user agents indicated by an AOR.

 As an example, consider a blind transfer application (see RFC 5589
 [19]). User A is talking to user B. User A wants to transfer the
 call to user C. So, user A sends a REFER to user C. That REFER
 looks like, in part:

 REFER sip:C@example.com SIP/2.0
 From: sip:A@example.com;tag=99asd
 To: sip:C@example.com
 Refer-To: (URI that identifies B’s UA)

 The Refer-To header field needs to contain a URI that can be used by
 user C to place a call to user B. However, this call needs to route
 to the specific UA instance that user B is using to talk to user A.
 If it doesn’t, the transfer service will not execute properly. For
 example, if A provides C with B’s AOR, the call might be routed to
 B’s voicemail rather than B’s current handset.

 In order to enable this functionality, user B provides an instance-
 specific URI to user A in the Contact header of their SIP exchange.
 This URI refers to the user agent B is currently using, and it can be
 dereferenced by C’s user agent. Because user B doesn’t know in
 advance who user A will transfer the call to, the URI has to be
 usable by anyone.

 Many current clients attempt to meet the need for an instance-
 specific identifier by using explicit IP addresses in the values they
 provide in the Contact header field. However, this interacts poorly
 with NATs and firewalls, and as a practical matter, these URIs cannot
 be used by arbitrary external clients. Usage of hostnames has proven
 problematic for similar reasons. In addition, many SIP clients do
 not have or cannot obtain a hostname for themselves at all.

 This specification describes a mechanism for providing a unique user-
 agent identifier which is still globally routable. This identifier
 is called a Globally Routable User Agent (UA) URI (GRUU).

Rosenberg Standards Track [Page 4]

RFC 5627 GRUU Mechanism October 2009

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [4].

 This specification defines the following additional terms:

 contact: The term "contact", when used in all lowercase, refers to a
 URI that is bound to an AOR and GRUU by means of a registration.
 A contact is usually a SIP URI, and is bound to the AOR and GRUU
 through a REGISTER request by appearing as a value of the Contact
 header field. The contact URI identifies a specific UA.

 remote target: The term "remote target" refers to a URI that a user
 agent uses to identify itself for receipt of both mid-dialog and
 out-of-dialog requests. A remote target is established by placing
 a URI in the Contact header field of a dialog-forming request or
 response and is updated by target refresh requests or responses.

 Contact header field: The term "Contact header field", with a
 capitalized C, refers to the header field that can appear in
 REGISTER requests and responses, redirects, or dialog-creating
 requests and responses. Depending on the semantics, the Contact
 header field sometimes conveys a contact, and sometimes conveys a
 remote target.

3. Overview of Operation

 The basic idea behind a GRUU is simple. GRUUs are issued by SIP
 domains and always route back to a proxy in that domain. In turn,
 the domain maintains the binding between the GRUU and the particular
 UA instance. When a GRUU is dereferenced while sending a SIP
 request, that request arrives at the proxy. It maps the GRUU to the
 contact for the particular UA instance, and sends the request there.

3.1. Structure of GRUUs

 A GRUU is a SIP URI that has two properties:

 o It routes to a specific UA instance.

 o It can be successfully dereferenced by any user agent on the
 Internet, not just ones in the same domain or IP network as the UA
 instance to which the GRUU points.

Rosenberg Standards Track [Page 5]

RFC 5627 GRUU Mechanism October 2009

 In principle, a GRUU can be constructed in any way the domain
 chooses, as long as it meets the criteria above. However, all GRUUs
 contain the "gr" URI parameter (either with or without a value), so
 that a recipient of a GRUU can tell that it has these two properties.

 In practice, there are two different types of GRUUs:

 1. GRUUs that expose the underlying AOR

 2. GRUUs that hide the underlying AOR

3.1.1. GRUUs That Expose the Underlying AOR

 In many cases, it is desirable to construct the GRUU in such a way
 that the mapping to the AOR is apparent. For example, many user
 agents retain call logs, which keep track of incoming and outgoing
 call attempts. If the UA had made a call to a GRUU (perhaps as a
 consequence of a transfer request), the call log will contain the
 GRUU. Since the call log is rendered to the user, it would be useful
 to be able to present the user with the AOR instead, since the AOR is
 meaningful to users as an identifier.

 This type of GRUU is called a public GRUU. It is constructed by
 taking the AOR, and adding the "gr" URI parameter with a value chosen
 by the registrar in the domain. The value of the "gr" URI parameter
 contains a representation of the UA instance. For instance, if the
 AOR was "sip:alice@example.com", the GRUU might be:

 sip:alice@example.com;gr=kjh29x97us97d

 If a UA removes the "gr" URI parameter, the result is the AOR. Since
 many systems ignore unknown parameters anyway, a public GRUU will
 "look" like the AOR to those systems.

3.1.2. GRUUs That Hide the Underlying AOR

 In other cases, it is desirable to construct a GRUU that obfuscates
 the AOR such that it cannot be extracted by a recipient of the GRUU.
 Such a GRUU is called a temporary GRUU. The most obvious reason to
 do this is to protect the user’s privacy. In such cases, the GRUU
 can have any content, provided that it meets the requirements in
 Sections 3.1 and 5.4, and the AOR cannot be readily determined from
 the GRUU. The GRUU will have the "gr" URI parameter, either with or
 without a value. In order to avoid creating excessive state in the
 registrar, it is often desirable to construct cryptographically
 protected "stateless" GRUUs using an algorithm like that described in
 Appendix A.

Rosenberg Standards Track [Page 6]

RFC 5627 GRUU Mechanism October 2009

 An example of a temporary GRUU constructed using a stateful algorithm
 would be:

 sip:asd887f9dfkk76690@example.com;gr

3.2. Obtaining a GRUU

 A user agent can obtain a GRUU in one of several ways:

 o As part of its REGISTER transaction.

 o By constructing one locally, using the IP address or hostname of
 the user agent instance as the domain part of the URI. These are
 called self-made GRUUs, and are only really GRUUs when constructed
 by UAs that know they are globally reachable using their IP
 address or hostname.

 o Via some locally specified administrative mechanism.

 A UA that wants to obtain a GRUU via its REGISTER request does so by
 providing an instance ID in the "+sip.instance" Contact header field
 parameter, defined in RFC 5626 [14]. For example:

 Contact: <sip:callee@192.0.2.2>
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"

 The registrar detects this header field parameter and provides two
 GRUUs in the REGISTER response. One of these is a temporary GRUU,
 and the other is the public GRUU. These two GRUUs are returned in
 the "temp-gruu" and "pub-gruu" Contact header field parameters in the
 response, respectively. For example:

 <allOneLine>
 Contact: <sip:callee@192.0.2.2>
 ;pub-gruu="sip:callee@example.com;gr=urn:
 uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
 ;temp-gruu="sip:tgruu.7hs==
 jd7vnzga5w7fajsc7-ajd6fabz0f8g5@example.com;gr"
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 ;expires=3600
 </allOneLine>

 Note that the <allOneLine> tag is used as defined in [17].

 When a user agent refreshes this registration prior to its
 expiration, the registrar will return back the same public GRUU, but
 will create a new temporary GRUU. Despite the fact that each refresh
 provides the UA with a new temporary GRUU, all of the temporary GRUUs

Rosenberg Standards Track [Page 7]

RFC 5627 GRUU Mechanism October 2009

 learned from previous REGISTER responses during the lifetime of a
 contact remain valid as long as (1) a contact with that instance ID
 remains registered, and (2) the UA doesn’t change the Call-ID in its
 REGISTER request compared to previous ones for the same reg-id [14].
 When the last contact for the instance expires, either through
 explicit de-registration or timeout, all of the temporary GRUUs
 become invalidated. Similarly, if a register refresh for a contact
 (or, if RFC 5626 is being used, for a reg-id) changes the Call-ID
 compared to previous register refreshes, all of the previous
 temporary GRUUs are invalidated. When the user agent later creates a
 new registration with the same instance ID, the public GRUU is the
 same. The temporary GRUU will be new (as it is with refreshes), and
 it will be the only valid temporary GRUU for the instance until the
 next refresh, at which point a second one becomes valid too.
 Consequently, temporary GRUUs "accumulate" during the lifetime of a
 registration.

3.3. Using a GRUU

 Once a user agent obtains GRUUs from the registrar, it uses them in
 several ways. First, it uses them as the contents of the Contact
 header field in non-REGISTER requests and responses that it emits
 (for example, an INVITE request and 200 OK response). According to
 RFC 3261 [1], the Contact header field is supposed to contain a URI
 that routes to that user agent. Prior to this specification, there
 hasn’t been a way to really meet that requirement. The user agent
 would use one of its temporary GRUUs for anonymous calls, and use its
 public GRUU otherwise.

 Second, the UA can use the GRUU in any other place it needs to use a
 URI that resolves to itself, such as a webpage.

3.4. Dereferencing a GRUU

 Because a GRUU is simply a URI, a UA dereferences it in exactly the
 same way as it would any other URI. However, once the request has
 been routed to the appropriate proxy, the behavior is slightly
 different. The proxy will map the GRUU to the AOR and determine the
 set of contacts that the particular UA instance has registered. The
 GRUU is then mapped to those contacts, and the request is routed
 towards the UA.

Rosenberg Standards Track [Page 8]

RFC 5627 GRUU Mechanism October 2009

4. User Agent Behavior

 This section defines the normative behavior for user agents.

4.1. Generating a REGISTER Request

 When a UA compliant to this specification generates a REGISTER
 request (initial or refresh), it MUST include the Supported header
 field in the request. The value of that header field MUST include
 "gruu" as one of the option tags. This alerts the registrar for the
 domain that the UA supports the GRUU mechanism.

 Furthermore, for each contact for which the UA desires to obtain a
 GRUU, the UA MUST include a "sip.instance" media feature tag (see RFC
 5626 [14]) as a UA characteristic (see [7]), whose value MUST be the
 instance ID that identifies the UA instance being registered. Each
 such Contact header field SHOULD NOT contain a "pub-gruu" or "temp-
 gruu" header field. The contact URI MUST NOT be equivalent, based on
 the URI equality rules in RFC 3261 [1], to the AOR in the To header
 field. If the contact URI is a GRUU, it MUST NOT be a GRUU for the
 AOR in the To header field.

 As in RFC 3261 [1], the Call-ID in a REGISTER refresh SHOULD be
 identical to the Call-ID used to previously register a contact. With
 GRUU, an additional consideration applies. If the Call-ID changes in
 a register refresh, the server will invalidate all temporary GRUUs
 associated with that UA instance; the only valid one will be the new
 one returned in that REGISTER response. When RFC 5626 is in use,
 this rule applies to the reg-ids: If the Call-ID changes for the
 registration refresh for a particular reg-id, the server will
 invalidate all temporary GRUUs associated with that UA instance as a
 whole. Consequently, if a UA wishes its previously obtained
 temporary GRUUs to remain valid, it MUST utilize the same Call-ID in
 REGISTER refreshes. However, it MAY change the Call-ID in a refresh
 if invalidation is the desired objective.

 Note that, if any dialogs are in progress that utilize a temporary
 GRUU as a remote target, and a UA performs a registration refresh
 with a change in Call-ID, those temporary GRUUs become invalid, and
 the UA will not be reachable for subsequent mid-dialog messages.

 If a UA instance is trying to register multiple contacts for the same
 instance for the purposes of redundancy, it MUST use the procedures
 defined in RFC 5626 [14].

 A UA utilizing GRUUs can still perform third-party registrations
 and can include contacts that omit the "+sip.instance" Contact
 header field parameter.

Rosenberg Standards Track [Page 9]

RFC 5627 GRUU Mechanism October 2009

 If a UA wishes to guarantee that the REGISTER request is not
 processed unless the domain supports and uses this extension, it MAY
 include a Require header field in the request with a value that
 contains the "gruu" option tag. This is in addition to the presence
 of the Supported header field, also containing the "gruu" option tag.
 The use of Proxy-Require is not necessary and is NOT RECOMMENDED.

4.2. Learning GRUUs from REGISTER Responses

 If the REGISTER response is a 2xx, each Contact header field that
 contains the "+sip.instance" Contact header field parameter can also
 contain a "pub-gruu" and "temp-gruu" Contact header field parameter.
 These header field parameters convey the public and a temporary GRUU
 for the UA instance, respectively. A UA MUST be prepared for a
 Contact header field to contain just a "pub-gruu", just a "temp-
 gruu", neither, or both. The temporary GRUU will be valid for the
 duration of the registration (that is, through refreshes), while the
 public GRUU persists across registrations. The UA will receive a new
 temporary GRUU in each successful REGISTER response, while the public
 GRUU will typically be the same. However, a UA MUST be prepared for
 the public GRUU to change from a previous one, since the persistence
 property is not guaranteed with complete certainty. If a UA changed
 its Call-ID in this REGISTER request compared to a previous REGISTER
 request for the same contact or reg-id, the UA MUST discard all
 temporary GRUUs learned through prior REGISTER responses. A UA MAY
 retain zero, one, some, or all of the temporary GRUUs that it is
 provided during the time over which at least one contact or reg-id
 remains continuously registered. If a UA stores any temporary GRUUs
 for use during its registration, it needs to be certain that the
 registration does not accidentally lapse due to clock skew between
 the UA and registrar. Consequently, the UA MUST refresh its
 registration such that the REGISTER refresh transaction will either
 complete or timeout prior to the expiration of the registration. For
 default transaction timers, this would be at least 32 seconds prior
 to expiration, assuming the registration expiration is larger than 64
 seconds. If the registration expiration is less than 64 seconds, the
 UA SHOULD refresh its registration halfway prior to expiration.

 Note that, when [14] is in use, and the UA is utilizing multiple
 flows for purposes of redundancy, the temporary GRUUs remain valid as
 long as at least one flow is registered. Thus, even if the
 registration of one flow expires, the temporary GRUUs learned
 previously remain valid.

 In cases where registrars forcefully shorten registration intervals,
 the registration event package, RFC 3680 [24], is used by user agents
 to learn of these changes. A user agent implementing both RFC 3680
 [24] and GRUU MUST also implement the extensions to RFC 3680 [24] for

Rosenberg Standards Track [Page 10]

RFC 5627 GRUU Mechanism October 2009

 conveying information on GRUU, as defined in RFC 5628 [28], as these
 are necessary to keep the set of temporary GRUUs synchronized between
 the UA and the registrar. More generally, the utility of temporary
 GRUUs depends on the UA and registrar being in sync on the set of
 valid temporary GRUUs at any time. Without support of RFC 3680 [24]
 and its extension for GRUU, the client will remain in sync only as
 long as it always re-registers well before the registration
 expiration. Besides forceful de-registrations, other events (such as
 network outages, connection failures, and short refresh intervals)
 can lead to potential inconsistencies in the set of valid temporary
 GRUUs. For this reason, it is RECOMMENDED that a UA that utilizes
 temporary GRUUs implement RFC 3680 [24] and RFC 5628 [28].

 A non-2xx response to the REGISTER request has no impact on any
 existing GRUUs previously provided to the UA. Specifically, if a
 previously successful REGISTER request provided the UA with a GRUU, a
 subsequent failed request does not remove, delete, or otherwise
 invalidate the GRUU.

 The user and host parts of the GRUU learned by the UA in the REGISTER
 response MUST be treated opaquely by the UA. That is, the UA MUST
 NOT modify them in any way. A UA MUST NOT modify or remove URI
 parameters it does not recognize. Furthermore, the UA MUST NOT add,
 remove, or modify URI parameters relevant for receipt and processing
 of request at the proxy, including the transport, lr, maddr, ttl,
 user, and comp (see RFC 3486 [25]) URI parameters. The other URI
 parameter defined in RFC 3261 [1], method, would not typically be
 present in a GRUU delivered from a registrar, and a UA MAY add a
 method URI parameter to the GRUU before handing it out to another
 entity. Similarly, the URI parameters defined in RFC 4240 [26] and
 RFC 4458 [27] are meant for consumption by the UA. These would not
 be included in the GRUU returned by a registrar and MAY be added by a
 UA wishing to provide services associated with those URI parameters.

 Note, however, that should another UA dereference the GRUU, the
 parameters will be lost at the proxy when the Request-URI is
 translated into the registered contact, unless some other means is
 provided for the attributes to be delivered to the UA. Mechanisms
 for such delivery are currently the subject of future standardization
 activity (see "Delivery of Request-URI Targets to User Agents" [29]).

4.3. Constructing a Self-Made GRUU

 Many user agents (such as gateways to the Public Switched Telephone
 Network (PSTN), conferencing servers, and media servers) do not
 perform registrations, and cannot obtain GRUUs through that
 mechanism. These types of user agents can be publicly reachable.
 This would mean that the policy of the domain is that requests can

Rosenberg Standards Track [Page 11]

RFC 5627 GRUU Mechanism October 2009

 come from anywhere on the public Internet and be delivered to the
 user agent without requiring processing by intervening proxies within
 the domain. Furthermore, firewall and NAT policies administered by
 the domain would allow such requests into the network. When a user
 agent is certain that these conditions are met, a UA MAY construct a
 self-made GRUU. Of course, a user agent that does REGISTER, but for
 whom these conditions are met regardless, MAY also construct a self-
 made GRUU. However, usage of GRUUs obtained by the registrar is
 RECOMMENDED instead.

 A self-made GRUU is one whose domain part equals the IP address or
 hostname of the user agent. The user part of the SIP URI is chosen
 arbitrarily by the user agent. Like all other GRUUs, the URI MUST
 contain the "gr" URI parameter, with or without a value, indicating
 it is a GRUU.

 If a user agent does not register, but is not publicly reachable, it
 would need to obtain a GRUU through some other means. Typically, the
 UA would be configured with a GRUU, the GRUU would be configured into
 the proxy, and the proxy will be configured with a mapping from the
 GRUU to the IP address (or hostname) and port of the UA.

4.4. Using One’s Own GRUUs

 A UA SHOULD use a GRUU when populating the Contact header field of
 dialog-forming and target refresh requests and responses. In other
 words, a UA compliant to this specification SHOULD use one of its
 GRUUs as its remote target. This includes:

 o the INVITE request

 o a 2xx or 18x response to an INVITE which contains a To tag

 o the SUBSCRIBE request (see [5])

 o a 2xx response to a SUBSCRIBE which contains a To tag

 o the NOTIFY request

 o the REFER request (see [6])

 o a 2xx response to NOTIFY

 o the UPDATE request

 o a 2xx response to NOTIFY

Rosenberg Standards Track [Page 12]

RFC 5627 GRUU Mechanism October 2009

 The only reason not to use a GRUU would be privacy considerations;
 see Section 10.3.

 When using a GRUU obtained through registrations, a UA MUST have an
 active registration prior to using a GRUU, and MUST use a GRUU
 learned through that registration. It MUST NOT reuse a GRUU learned
 through a previous registration that has lapsed (in other words, one
 obtained when registering a contact that has expired). The UA MAY
 use either the public or one of its temporary GRUUs provided by its
 registrar. A UA MUST NOT use a temporary GRUU learned in a REGISTER
 response whose Call-ID differs from the one in the most recent
 REGISTER request generated by the UA for the same AOR and instance ID
 (and, if RFC 5626 [14] is in use, reg-id). When a UA wishes to
 construct an anonymous request as described in RFC 3323 [15], it
 SHOULD use a temporary GRUU. See Section 10.3 for a more complete
 discussion on the level of privacy afforded by temporary GRUUs.

 As per RFC 3261 [1], a UA SHOULD include a Supported header with the
 option tag "gruu" in requests and responses it generates.

4.4.1. Considerations for Multiple AORs

 In some SIP networks, a user agent can have a multiplicity of AORs,
 either in different domains or within the same domain. In such
 cases, additional considerations apply.

 When a UA sends a request, the request will be sent ’using’ one of
 its AORs. This AOR will typically show up in the From header field
 of the request, and credentials unique to that AOR will be used to
 authenticate the request. The GRUU placed into the Contact header
 field of such a request SHOULD be one that is associated with the AOR
 used to send the request. In cases where the UA uses a tel URI (as
 defined in [11]) to populate the From header field, the UA typically
 has a SIP AOR that is treated as an alias for the tel URI. The GRUU
 associated with that SIP AOR SHOULD be used in the Contact header
 field.

 When a UA receives a request, the GRUU placed into the Contact header
 field of a 2xx response SHOULD be the one associated with the AOR or
 GRUU to which the request was most recently targeted. There are
 several ways to determine the AOR or GRUU to which a request was
 sent. For example, if a UA registered a different contact to each
 AOR (by using a different user part of the URI), the Request-URI
 (which contains that contact) will indicate the AOR.

Rosenberg Standards Track [Page 13]

RFC 5627 GRUU Mechanism October 2009

4.5. Dereferencing a GRUU

 A GRUU is identified by the presence of the "gr" URI parameter, and
 this URI parameter might or might not have a value. A UA that wishes
 to send a request to a URI that contains a GRUU knows that the
 request will be delivered to a specific UA instance without further
 action on the part of the requestor.

 Some UAs implement non-standard URI-handling mechanisms that
 compensate for the fact that heretofore many contact URIs have not
 been globally routable. Since any URI containing the "gr" URI
 parameter is known to be globally routable, a UA SHOULD NOT apply
 such mechanisms when a contact URI contains the "gr" URI parameter.

 Because the instance ID is a callee capabilities parameter, a UA
 might be tempted to send a request to the AOR of a user, and
 include an Accept-Contact header field (defined in [12]) that
 indicates a preference for routing the request to a UA with a
 specific instance ID. Although this would appear to have the same
 effect as sending a request to the GRUU, it does not. The caller
 preferences expressed in the Accept-Contact header field are just
 preferences. Their efficacy depends on a UA constructing an
 Accept-Contact header field that interacts with domain-processing
 logic for an AOR, to cause a request to route to a particular
 instance. Given the variability in routing logic in a domain (for
 example, time-based routing to only selected contacts), this
 doesn’t work for many domain-routing policies. However, this
 specification does not forbid a client from attempting such a
 request, as there can be cases where the desired operation truly
 is a preferential routing request.

4.6. Rendering GRUUs on a User Interface

 When rendering a GRUU to a user through a user interface, it is
 RECOMMENDED that the "gr" URI parameter be removed. For public
 GRUUs, this will produce the AOR, as desired. For temporary GRUUs,
 the resulting URI will be seemingly random. Future work might
 provide improved mechanisms that would allow an automaton to know
 that a URI is anonymized, and therefore inappropriate to render.

5. Registrar Behavior

5.1. Processing a REGISTER Request

 A REGISTER request might contain a Require header field with the
 "gruu" option tag; this indicates that the registrar has to
 understand this extension in order to process the request. It does
 not require the registrar to create GRUUs, however.

Rosenberg Standards Track [Page 14]

RFC 5627 GRUU Mechanism October 2009

 As the registrar is processing the contacts in the REGISTER request
 according to the procedures of step 7 in Section 10.3 of RFC 3261
 [1], the registrar checks whether each Contact header field in the
 REGISTER message contains a "+sip.instance" header field parameter.
 If present with a non-zero expiration, the contact is processed
 further based on the rules in the remainder of this section.
 Otherwise, the contact is processed based on normal RFC 3261 [1]
 rules.

 Note that handling of a REGISTER request containing a Contact
 header field with value "*" and an expiration of zero still
 retains the meaning defined in RFC 3261 [1] -- all contacts, not
 just those with a specific instance ID, are deleted. As described
 in Section 5.4, this removes the binding of each contact to the
 AOR and the binding of each contact to its GRUUs.

 If the contact URI is equivalent (based on URI equivalence in RFC
 3261 [1]) to the AOR, the registrar MUST reject the request with a
 403, since this would cause a routing loop. If the contact URI is a
 GRUU for the AOR in the To header field of the REGISTER request, the
 registrar MUST reject the request with a 403, for the same reason.
 If the contact is not a SIP URI, the REGISTER request MUST be
 rejected with a 403.

 Next, the registrar checks if there is already a valid public GRUU
 for the AOR (present in the To header field of the REGISTER request)
 and the instance ID (present as the content of the "+sip.instance"
 Contact header field parameter). If there is no valid public GRUU,
 the registrar SHOULD construct a public GRUU at this time according
 to the procedures of Section 5.4. The public GRUU MUST be
 constructed by adding the "gr" URI parameter, with a value, to the
 AOR. If the contact contained a "pub-gruu" Contact header field
 parameter, the header field parameter MUST be ignored by the
 registrar. A UA cannot suggest or otherwise provide a public GRUU to
 the registrar.

 Next, the registrar checks for any existing contacts registered to
 the same AOR, instance ID, and if the contact in the REGISTER request
 is registering a flow [14], reg-id. If there is at least one, the
 registrar finds the one that was most recently registered, and
 examines the Call-ID value associated with that registered contact.
 If it differs from the one in the REGISTER request, the registrar
 MUST invalidate all previously generated temporary GRUUs for the AOR
 and instance ID. A consequence of this invalidation is that requests
 addressed to those GRUUs will be rejected by the domain with a 404
 from this point forward.

Rosenberg Standards Track [Page 15]

RFC 5627 GRUU Mechanism October 2009

 Next, the registrar SHOULD create a new temporary GRUU for the AOR
 and instance ID with the characteristics described in Section 5.4.
 The temporary GRUU construction algorithm MUST have the following two
 properties:

 1. The likelihood that the temporary GRUU is equal to another GRUU
 that the registrar has created MUST be vanishingly small.

 2. Given a pair of GRUUs, it MUST be computationally infeasible to
 determine whether they were issued for the same AOR or instance
 ID or for different AORs and instance IDs.

 If the contact contained a "temp-gruu" Contact header field
 parameter, the header field parameter MUST be ignored by the
 registrar. A UA cannot suggest or otherwise provide a temporary GRUU
 to the registrar.

5.2. Generating a REGISTER Response

 When generating the 200 (OK) response to the REGISTER request, the
 procedures of step 8 of Section 10.3 of RFC 3261 [1] are followed.
 Furthermore, for each Contact header field value placed in the
 response, if the registrar has stored an instance ID associated with
 that contact, that instance ID is returned as a Contact header field
 parameter. If the REGISTER request contained a Supported header
 field that included the "gruu" option tag, and the registrar has at
 least one temporary GRUU assigned to the instance ID and AOR, the
 registrar MUST add a "temp-gruu" Contact header field parameter to
 that Contact header field. The value of the "temp-gruu" parameter is
 a quoted string, and MUST contain the most recently created temporary
 GRUU for that AOR and instance ID. In addition, if the registrar has
 a public GRUU assigned to the instance ID and AOR (and the client
 supports GRUUs), the registrar MUST add a "pub-gruu" Contact header
 field parameter to that Contact header field. The value of the "pub-
 gruu" Contact header field parameter is the public GRUU.

 The registrar SHOULD NOT include the "gruu" option tag in the Require
 or Supported header field of the response.

5.3. Timing Out a Registration

 When a registered contact expires (either due to timeout or explicit
 de-registration), its binding to the AOR is removed as usual. In
 addition, its binding to its GRUUs are removed at the same time, as a
 consequence of the relationships described in Section 5.4

Rosenberg Standards Track [Page 16]

RFC 5627 GRUU Mechanism October 2009

 If, as a consequence of the expiration of the contact, a particular
 GRUU no longer has any registered contacts bound to it, and the GRUU
 is a temporary GRUU, the GRUU MUST be invalidated. This means that
 all of the accumulated temporary GRUUs get invalidated once the last
 contact for a given instance ID expires.

 If, however, the GRUU was a public GRUU, the registrar SHOULD
 continue to treat the GRUU as valid. Consequently, subsequent
 requests targeted to the GRUU, prior to re-registration of a contact
 to the GRUU, SHOULD return a 480 (Temporarily Unavailable) response.
 In addition, since the GRUU remains valid, the rules in Section 5.1
 will cause it to be retained when a contact with that instance ID is
 once again registered to the AOR.

 These rules give a public GRUU a semi-permanent property. The
 intent is that the registrar make every attempt to retain validity
 of the GRUU for as long as the AOR itself is known within the
 domain. The requirements for doing so are at SHOULD strength and
 not MUST strength because of the difficulty in meeting a MUST
 strength requirement; registrar failures could cause the set of
 valid GRUUs to be lost, and this specification requires the UA to
 be robust against such cases. That said, it is possible for a
 public GRUU to be constructed such that a registrar does not need
 to retain any additional state for it, yet the GRUU still meets
 the requirements described here.

5.4. Creation of a GRUU

 This section defines additional behaviors associated with the
 construction and maintenance of a GRUU that are specific to a
 registrar. These rules do not apply to self-made GRUUs or GRUUs not
 obtained through registrations.

 When a registrar creates a GRUU, it is required to maintain certain
 information associated with the GRUU, regardless of whether it is a
 public or temporary GRUU. Every GRUU is associated with a single AOR
 and a single instance ID. A registrar MUST be able to determine the
 instance ID and AOR when presented with a GRUU. In addition, the
 GRUU, like an AOR, resolves to zero or more contacts. While the AOR
 resolves to all registered contacts for an AOR, a GRUU resolves only
 to those contacts whose instance ID matches the one associated with
 the GRUU. For this reason, a contact with an instance ID is always
 bound to both a GRUU and its AOR, never just an AOR or just a GRUU.
 This is shown pictorially in Figure 1. The figure shows three
 contacts registered to a single AOR. One of the contacts has an
 instance ID of 1, and the other two have an instance ID of 2. There
 are two GRUUs for this AOR. One is associated with instance ID 1,
 and the other with instance ID 2. The first GRUU resolves only to

Rosenberg Standards Track [Page 17]

RFC 5627 GRUU Mechanism October 2009

 contacts whose instance ID is 1, and the second resolves only to
 contacts whose instance ID is 2. There will typically be multiple
 contacts for a given instance ID if a UA has crashed, rebooted, and
 re-registered with the same instance ID, or is using the mechanisms
 of RFC 5626 [14] to have multiple registrations for redundancy. If
 the contact for instance ID 1 expires, the AOR would resolve to two
 contacts, but the GRUU associated with instance ID 1 would resolve to
 zero.

 +----------+ +----------+ +----------+
 | GRUU | | | | GRUU |
 | | | AOR | | |
 |Instance:1| | | |Instance:2|
 +----------+ +----------+ +----------+
 | / | \ / |
 | / | \ / |
 | / | \ / |
 | / | \ / |
 | / | \ / |
 | / | \ / |
 | / | X |
 | / | / \ |
 | / | / \ |
 | / | / \ |
 V V V V V V
 +----------+ +----------+ +----------+
 | Contact | | Contact | | Contact |
 | | | | | |
 |Instance:1| |Instance:2| |Instance:2|
 +----------+ +----------+ +----------+

 Figure 1

 There can be multiple GRUUs with the same instance ID and AOR.
 Indeed, this specification requires registrars to maintain many --
 one that is public, and several that are temporary. However, if two
 GRUUs are associated with different AORs or different instance IDs or
 both, the GRUUs MUST be different based on URI equality comparison.
 A GRUU in a domain MUST NOT be equivalent, based on URI comparison,
 to any AOR in a domain except for the one associated with the GRUU.

 A public GRUU will always be equivalent to the AOR based on URI
 equality rules. The reason is that the rules in RFC 3261 [1]
 cause URI parameters that are in one URI, but not in the other, to
 be ignored for equality purposes. Since a public GRUU differs
 from an AOR only by the presence of the "gr" URI parameter, the
 two URIs are equivalent based on those rules.

Rosenberg Standards Track [Page 18]

RFC 5627 GRUU Mechanism October 2009

 Once a temporary GRUU is constructed, it MUST be considered valid by
 the registrar until invalidated based on the rules described
 previously. Once a public GRUU is constructed, it MUST be considered
 valid for the duration that the AOR itself is valid. Once an AOR is
 no longer valid within a domain, all of its GRUUs MUST be considered
 invalid as well.

 This specification does not mandate a particular mechanism for
 construction of the GRUU. Example algorithms for public and
 temporary GRUUs that work well are given in Appendix A. However, in
 addition to the properties described in Section 3.1, a GRUU
 constructed by a registrar MUST exhibit the following properties:

 o The domain part of the URI is an IP address present on the public
 Internet, or, if it is a hostname, the resolution procedures of
 RFC 3263 [2], once applied, result in an IP address on the public
 Internet.

 o When a request is sent to the GRUU, it routes to a proxy that can
 access the registration data generated by the registrar. Such a
 proxy is called an authoritative proxy, defined in RFC 5626 [14].

5.5. Registration Event Support

 RFC 3680 [24] defines an event package that allows a client to learn
 about registration events at the registrar. This package allows
 registrars to alter registrations forcefully (for example, shortening
 them to force a re-registration). If a registrar is supporting RFC
 3680 [24] and GRUU, it MUST also support RFC 5628 [28].

6. Proxy Behavior

 Proxy behavior is fully defined in Section 16 of RFC 3261 [1]. GRUU
 processing impacts that processing in two places -- request targeting
 at the authoritative proxy and record-routing.

6.1. Request Targeting

 When a proxy receives a request, owns the domain in the Request-URI,
 and is supposed to access a location service in order to compute
 request targets (as specified in Section 16.5 of RFC 3261 [1]), the
 proxy examines the Request-URI. If it contains the "gr" URI
 parameter but is not equivalent, based on URI comparison, to a
 currently valid GRUU within the domain, it SHOULD be rejected with a
 404 (Not Found) response; this is the same behavior a proxy would
 exhibit for any other URI within the domain that is not valid.

Rosenberg Standards Track [Page 19]

RFC 5627 GRUU Mechanism October 2009

 If the Request-URI contains the "gr" URI parameter and is equivalent,
 based on URI comparison, to a GRUU which is currently valid within
 the domain, processing proceeds as it would for any other URI present
 in the location service, as defined in Section 16.5 of RFC 3261 [1],
 except that the "gr" URI parameter is not removed as part of the
 canonicalization process. This is the case for both out-of-dialog
 requests targeted to the GRUU, and mid-dialog requests targeted to
 the GRUU (in which case the incoming request would have a Route
 header field value containing the URI that the proxy used for record-
 routing.).

 Note that the "gr" URI parameter is retained just for the purposes of
 finding the GRUU in the location service; if a match is found, the
 Request-URI will be rewritten with the registered contacts, replacing
 the GRUU and its "gr" URI parameter. The "gr" URI parameter is not
 carried forward into the rewritten Request-URI.

 If there are no registered contacts bound to the GRUU, the server
 MUST return a 480 (Temporarily Unavailable) response. If there are
 more than one, there are two cases:

 1. The client is using RFC 5626 [14] and registering multiple
 contacts for redundancy. In that case, these contacts contain
 "reg-id" Contact header field parameters, and the rules described
 in Section 7 of RFC 5626 [14] for selecting a single registered
 contact apply.

 2. The client was not using RFC 5626 [14], in which case there would
 only be multiple contacts with the same instance ID if the client
 had rebooted, restarted, and re-registered. In this case, these
 contacts would not contain the "reg-id" Contact header field
 parameter. The proxy MUST select the most recently refreshed
 contact. As with RFC 5626, if a request to this target fails
 with a 408 (Request Timeout) or 430 (Flow Failed) response, the
 proxy SHOULD retry with the next most recently refreshed contact.
 Furthermore, if the request fails with any other response, the
 proxy MUST NOT retry on any other contacts for this instance.

 Any caller preferences in the request (as defined in RFC 3841 [12])
 SHOULD be processed against the contacts bound to the GRUU.

 In essence, to select a registered contact, the GRUU is processed
 just like it was the AOR, but with only a subset of the contacts
 bound to the AOR.

 Special considerations apply to the processing of any Path headers
 stored in the registration (see RFC 3327 [3]). If the received
 request has Route header field values beyond the one pointing to the

Rosenberg Standards Track [Page 20]

RFC 5627 GRUU Mechanism October 2009

 authoritative proxy itself (this will happen when the request is a
 mid-dialog request), the Path URI MUST be discarded. This is
 permitted by RFC 3327 [3] as a matter of local policy; usage of GRUUs
 will require this policy in order to avoid call spirals and likely
 call failures.

 A proxy MAY apply other processing to the request, such as execution
 of called party features, as it might do for requests targeted to an
 AOR. For requests that are outside of a dialog, it is RECOMMENDED to
 apply screening types of functions, both automated (such as blacklist
 and whitelist screening) and interactive (such as interactive voice
 response (IVR) applications that confer with the user to determine
 whether to accept a call). In many cases, the new request is related
 to an existing dialog, and might be an attempt to join it (using the
 Join header field defined in RFC 3911 [21]) or replace it (using the
 Replaces header field defined in RFC 3891 [22]). When the new
 request is related to an existing dialog, the UA will typically make
 its own authorization decisions; bypassing screening services at the
 authoritative proxy might make sense, but needs to be carefully
 considered by network designers, as the ability to do so depends on
 the specific type of screening service.

 However, forwarding services, such as call forwarding, SHOULD NOT be
 provided for requests sent to a GRUU. The intent of the GRUU is to
 target a specific UA instance, and this is incompatible with
 forwarding operations.

 If the request is a mid-dialog request, a proxy SHOULD only apply
 services that are meaningful for mid-dialog requests, generally
 speaking. This excludes screening and forwarding functions.

 In addition, a request sent to a GRUU SHOULD NOT be redirected. In
 many instances, a GRUU is used by a UA in order to assist in the
 traversal of NATs and firewalls, and a redirection might prevent such
 a case from working.

6.2. Record-Routing

 There are two distinct requirements for record-routing -- in the
 originating domain and in the terminating domain. These requirements
 avoid unnecessary, and possibly problematic, spirals of requests.

 If:

 o an originating authoritative proxy receives a dialog-forming
 request,

Rosenberg Standards Track [Page 21]

RFC 5627 GRUU Mechanism October 2009

 o AND the Contact header field contains a GRUU in the domain of the
 proxy,

 o AND that GRUU is a valid one in the domain of the proxy,

 o AND that GRUU is associated with the AOR matching the
 authenticated identity of the requestor (assuming such
 authentication has been performed),

 o AND the request contains Record-Route header fields,

 then the authoritative proxy MUST record-route. If all of these
 conditions are true, except that the GRUU is associated with an AOR
 that did not match the authenticated identity of the requestor, it is
 RECOMMENDED that the proxy reject the request with a 403 (Forbidden)
 response.

 If:

 o a terminating authoritative proxy receives a dialog-forming
 request,

 o AND the Request-URI contains a URI in the location service (either
 a GRUU or an AOR),

 o AND the contact selected for sending the request has an instance
 ID and is bound to a GRUU,

 o AND the registration contain Path URI,

 then the authoritative proxy MUST record-route.

 If a proxy is in either the originating or terminating domains but is
 not an authoritative proxy, the proxy MAY record-route.

 If a proxy in the terminating domain requires mid-dialog requests to
 pass through it for whatever reason (firewall traversal, accounting,
 etc.), the proxy MUST still record-route, and MUST NOT assume that a
 UA will utilize its GRUU in the Contact header field of its response
 (which would cause mid-dialog requests to pass through the proxy
 without record-routing).

 Implementors should note that, if a UA uses a GRUU in its contact,
 and a proxy inserted itself into the Path header field of a
 registration, that proxy will be receiving mid-dialog requests
 regardless of whether it record-routes or not. The only
 distinction is what URI the proxy will see in the topmost Route

Rosenberg Standards Track [Page 22]

RFC 5627 GRUU Mechanism October 2009

 header field of mid-dialog requests. If the proxy record-routes,
 it will see that URI. If it does not, it will see the Path URI it
 inserted.

7. Grammar

 This specification defines two new Contact header field parameters
 ("temp-gruu" and "pub-gruu") by extending the grammar for "contact-
 params" as defined in RFC 3261 [1]. It also defines a new SIP URI
 parameter ("gr") by extending the grammar for "uri-parameter" as
 defined in RFC 3261 [1]. The ABNF [13] is as follows:

 contact-params =/ temp-gruu / pub-gruu
 temp-gruu = "temp-gruu" EQUAL quoted-string
 pub-gruu = "pub-gruu" EQUAL quoted-string

 uri-parameter =/ gr-param
 gr-param = "gr" ["=" pvalue] ; defined in RFC 3261

 The quoted strings for temp-gruu and pub-gruu MUST contain a SIP URI.
 However, they are encoded like all other quoted strings and can
 therefore contain quoted-pair escapes when represented this way.

8. Requirements

 This specification was created in order to meet the following
 requirements:

 REQ 1: When a UA invokes a GRUU, it must cause the request to be
 routed to the specific UA instance to which the GRUU refers.

 REQ 2: It must be possible for a GRUU to be invoked from anywhere on
 the Internet, and still cause the request to be routed
 appropriately. That is, a GRUU must not be restricted to use
 within a specific addressing realm.

 REQ 3: It must be possible for a GRUU to be constructed without
 requiring the network to store additional state.

 REQ 4: It must be possible for a UA to obtain a multiplicity of
 GRUUs that each route to that UA instance. For example, this is
 needed to support ad hoc conferencing where a UA instance needs a
 different URI for each conference it is hosting. NOTE: This
 requirement is not met by this specification, and is being
 addressed in a separate specification (currently, "Delivery of
 Request-URI Targets to User Agents" [29]).

Rosenberg Standards Track [Page 23]

RFC 5627 GRUU Mechanism October 2009

 REQ 5: When a UA receives a request sent to a GRUU, it must be
 possible for the UA to know the GRUU that was used to invoke the
 request. This is necessary as a consequence of REQ 4. NOTE: This
 requirement is not met by this specification, and is being
 addressed in a separate specification (currently, "Delivery of
 Request-URI Targets to User Agents" [29]).

 REQ 6: It must be possible for a UA to add opaque content to a GRUU.
 This content is not interpreted or altered by the network, and is
 used only by the UA instance to whom the GRUU refers. This
 provides a basic cookie type of functionality, allowing a UA to
 build a GRUU with the state embedded. NOTE: This requirement is
 not met by this specification, and is being addressed in a
 separate specification (currently, "Delivery of Request-URI
 Targets to User Agents" [29]).

 REQ 7: It must be possible for a proxy to execute services and
 features on behalf of a UA instance represented by a GRUU. As an
 example, if a user has call-blocking features, a proxy might want
 to apply those call-blocking features to calls made to the GRUU,
 in addition to calls made to the user’s AOR.

 REQ 8: It must be possible for a UA in a dialog to inform its peer
 of its GRUU, and for the peer to know that the URI represents a
 GRUU. This is needed for the conferencing and dialog reuse
 applications of GRUUs, where the URIs are transferred within a
 dialog.

 REQ 9: When transferring a GRUU per REQ 8, it must be possible for
 the UA receiving the GRUU to be assured of its integrity and
 authenticity.

 REQ 10: It must be possible for a server that is authoritative for a
 domain to construct a GRUU that routes to a UA instance bound to
 an AOR in that domain. In other words, the proxy can construct a
 GRUU, too. This is needed for the presence application.

9. Example Call Flow

 The following call flow, shown in Figure 2, shows a basic
 registration and call setup, followed by a subscription directed to
 the GRUU. It then shows a failure of the callee, followed by a re-
 registration. The conventions of RFC 4475 [17] are used to describe
 the representation of long message lines.

Rosenberg Standards Track [Page 24]

RFC 5627 GRUU Mechanism October 2009

 Caller Proxy Callee
 | |(1) REGISTER |
 | |<--------------------|
 | |(2) 200 OK |
 | |-------------------->|
 |(3) INVITE | |
 |-------------------->| |
 | |(4) INVITE |
 | |-------------------->|
 | |(5) 200 OK |
 | |<--------------------|
 |(6) 200 OK | |
 |<--------------------| |
 |(7) ACK | |
 |-------------------->| |
 | |(8) ACK |
 | |-------------------->|
 |(9) SUBSCRIBE | |
 |-------------------->| |
 | |(10) SUBSCRIBE |
 | |-------------------->|
 | |(11) 200 OK |
 | |<--------------------|
 |(12) 200 OK | |
 |<--------------------| |
 | |(13) NOTIFY |
 | |<--------------------|
 |(14) NOTIFY | |
 |<--------------------| |
 |(15) 200 OK | |
 |-------------------->| |
 | |(16) 200 OK |
 | |-------------------->|
 | | |Crashes,
 | |(17) REGISTER | Reboots
 | |<--------------------|
 | |(18) 200 OK |
 | |-------------------->|

 Figure 2

Rosenberg Standards Track [Page 25]

RFC 5627 GRUU Mechanism October 2009

 The callee supports the GRUU extension. As such, its REGISTER (1)
 looks like:

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.1;branch=z9hG4bKnashds7
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=a73kszlfl
 Supported: gruu
 To: Callee <sip:callee@example.com>
 Call-ID: 1j9FpLxk3uxtm8tn@192.0.2.1
 CSeq: 1 REGISTER
 Contact: <sip:callee@192.0.2.1>
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 Content-Length: 0

 The registrar assigns a temporary and a public GRUU. The REGISTER
 response (message 2) would look like:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 192.0.2.1;branch=z9hG4bKnashds7
 From: Callee <sip:callee@example.com>;tag=a73kszlfl
 To: Callee <sip:callee@example.com> ;tag=b88sn
 Call-ID: 1j9FpLxk3uxtm8tn@192.0.2.1
 CSeq: 1 REGISTER
 <allOneLine>
 Contact: <sip:callee@192.0.2.1>
 ;pub-gruu="sip:callee@example.com
 ;gr=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
 ;temp-gruu="sip:tgruu.7hs==
 jd7vnzga5w7fajsc7-ajd6fabz0f8g5@example.com;gr"
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 ;expires=3600
 </allOneLine>
 Content-Length: 0

 The Contact header field in the REGISTER response contains the "pub-
 gruu" Contact header field parameter with the public GRUU sip:callee@
 example.com;gr=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6, and the
 "temp-gruu" header field parameter with the temporary GRUU
 sip:tgruu.7hs==jd7vnzga5w7fajsc7-ajd6fabz0f8g5@example.com;gr. Both
 are valid GRUUs for the AOR and instance ID, and both translate to
 the contact sip:callee@192.0.2.1.

 The INVITE from the caller (message 3) is a normal SIP INVITE.
 However, the 200 OK generated by the callee (message 5) now contains
 a GRUU as the remote target. The UA has chosen to use its public
 GRUU.

Rosenberg Standards Track [Page 26]

RFC 5627 GRUU Mechanism October 2009

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKnaa8
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK99a
 From: Caller <sip:caller@example.com>;tag=n88ah
 To: Callee <sip:callee@example.com> ;tag=a0z8
 Call-ID: 1j9FpLxk3uxtma7@host.example.com
 CSeq: 1 INVITE
 Supported: gruu
 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK, SUBSCRIBE
 <allOneLine>
 Contact:
 <sip:callee@example.com
 ;gr=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>
 </allOneLine>
 Content-Length: --
 Content-Type: application/sdp

 [SDP Not shown]

 At some point later in the call, the caller decides to subscribe to
 the dialog event package (defined in [16]) at that specific UA. To
 do that, it generates a SUBSCRIBE request (message 9), but directs it
 towards the remote target, which is a GRUU:

 <allOneLine>
 SUBSCRIBE sip:callee@example.com;gr=urn:uuid:f8
 1d4fae-7dec-11d0-a765-00a0c91e6bf6
 SIP/2.0
 </allOneLine>
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK9zz8
 From: Caller <sip:caller@example.com>;tag=kkaz-
 <allOneLine>
 To: <sip:callee@example.com;gr=urn:uuid:f8
 1d4fae-7dec-11d0-a765-00a0c91e6bf6>
 </allOneLine>
 Call-ID: faif9a@host.example.com
 CSeq: 2 SUBSCRIBE
 Supported: gruu
 Event: dialog
 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK, NOTIFY
 Contact: <sip:caller@example.com;gr=hdg7777ad7aflzig8sf7>
 Content-Length: 0

 In this example, the caller itself supports the GRUU extension and is
 using its own GRUU to populate its remote target.

Rosenberg Standards Track [Page 27]

RFC 5627 GRUU Mechanism October 2009

 This request is routed to the proxy, which proceeds to perform a
 location lookup on the Request-URI. It is translated into the
 contact for that instance, and then proxied to that contact.

 SUBSCRIBE sip:callee@192.0.2.1 SIP/2.0
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bK9555
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK9zz8
 From: Caller <sip:caller@example.com>;tag=kkaz-
 <allOneLine>
 To: <sip:callee@example.com;gr=urn:uuid:f8
 1d4fae-7dec-11d0-a765-00a0c91e6bf6>
 </allOneLine>
 Call-ID: faif9a@host.example.com
 CSeq: 2 SUBSCRIBE
 Supported: gruu
 Event: dialog
 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK, NOTIFY
 Contact: <sip:caller@example.com;gr=hdg7777ad7aflzig8sf7>
 Content-Length: 0

 The SUBSCRIBE generates a 200 response (message 11), which is
 followed by a NOTIFY (message 13 and 14) and its response (message 15
 and 16). At some point after message 16 is received, the callee’s
 machine crashes and recovers. It obtains a new IP address,
 192.0.2.2. Unaware that it had previously had an active
 registration, it creates a new one (message 17 below). Notice how
 the instance ID remains the same, as it persists across reboot
 cycles:

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbba
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=ha8d777f0
 Supported: gruu
 To: Callee <sip:callee@example.com>
 Call-ID: hf8asxzff8s7f@192.0.2.2
 CSeq: 1 REGISTER
 <allOneLine>
 Contact: <sip:callee@192.0.2.2>
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 </allOneLine>
 Content-Length: 0

 The registrar notices that a different contact, sip:callee@192.0.2.1,
 is already associated with the same instance ID. It registers the
 new one too and returns both in the REGISTER response. Both have the
 same public GRUUs, but the registrar has generated a second temporary
 GRUU for this AOR and instance ID combination. Both contacts are

Rosenberg Standards Track [Page 28]

RFC 5627 GRUU Mechanism October 2009

 included in the REGISTER response, and the temporary GRUU for each is
 the same -- the most recently created one for the instance ID and
 AOR. The registrar then generates the following response:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbba
 From: Callee <sip:callee@example.com>;tag=ha8d777f0
 To: Callee <sip:callee@example.com>;tag=99f8f7
 Call-ID: hf8asxzff8s7f@192.0.2.2
 CSeq: 1 REGISTER
 <allOneLine>
 Contact: <sip:callee@192.0.2.2>
 ;pub-gruu="sip:callee@example.com;gr=urn:
 uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
 ;temp-gruu="sip:tgruu.7hatz6cn-098shfyq193=
 ajfux8fyg7ajqqe7@example.com;gr"
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 ;expires=3600
 </allOneLine>
 <allOneLine>
 Contact: <sip:callee@192.0.2.1>
 ;pub-gruu="sip:callee@example.com;gr=urn:
 uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
 ;temp-gruu="sip:tgruu.7hatz6cn-098shfyq193=
 ajfux8fyg7ajqqe7@example.com;gr"
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 ;expires=400
 </allOneLine>
 Content-Length: 0

 There is no need for the UA to remove the stale registered contact;
 the request targeting rules in Section 6.1 will cause the request to
 be delivered to the most recent one.

10. Security Considerations

 Attacks in SIP networks using GRUUs can be divided into outside
 attacks (where a third party is trying to attack the system) and
 inside attacks (where the attacker is a valid participant in the
 system but is malicious). In addition, there are privacy
 considerations with using GRUUs.

10.1. Outside Attacks

 It is important for a UA to be assured of the integrity of a GRUU
 given in a REGISTER response. If the GRUU is tampered with by an
 attacker, the result could be denial of service (DoS) to the UA. As
 a result, it is RECOMMENDED that a UA use the SIPS URI scheme in the

Rosenberg Standards Track [Page 29]

RFC 5627 GRUU Mechanism October 2009

 Request-URI when registering. Proxies and registrars MUST support
 the SIPS URI and MUST support TLS. This does not represent a change
 from the requirements in RFC 3261 [1].

 The example GRUU construction algorithm in Appendix A.1 makes no
 attempt to create a GRUU that hides the AOR and instance ID
 associated with the GRUU. In general, determination of the AOR
 associated with a GRUU is considered a good property, since it allows
 for easy tracking of the target of a particular call. Learning the
 instance ID provides little benefit to an attacker. To register or
 otherwise impact registrations for the user, an attacker would need
 to obtain the credentials for the user. Knowing the instance ID is
 insufficient.

 The example GRUU construction algorithm in Appendix A.1 makes no
 attempt to create a GRUU that prevents users from guessing a GRUU
 based on knowledge of the AOR and instance ID. A user that is able
 to do that will be able to direct a new request at a particular
 instance. However, this specification recommends that service
 treatment (in particular, screening features) be given to requests
 that are sent to a GRUU. That treatment will make sure that the GRUU
 does not provide a back door for attackers to contact a user that has
 tried to block the attacker.

10.2. Inside Attacks

 As a consequence of this specification, a UA will begin using GRUUs
 in the dialog forming and target refresh requests and responses it
 emits. These GRUUs will be passed to another UA (called the
 correspondent), which then uses them in requests that they emit.

 If a malicious correspondent removes the "gr" URI parameter, the
 request will be routed to the authoritative proxy. If the GRUU had
 been temporary, removal of the "gr" URI parameter produces a URI that
 is not recognized as a GRUU and is not equal to any AOR. The request
 will be rejected. If the GRUU had been public, removing the "gr" URI
 parameter would have produced the AOR. Therefore, the request is
 treated like a call to the AOR. Since it is a desired goal to allow
 users to extract the AOR from the GRUU, this is not an attack, and
 the call will be handled normally.

 A malicious user in the system might try to use a GRUU for launching
 a DoS attack against another SIP UA. To do that, it would wait for a
 call from that UA, and from it, observe their GRUU. Once the GRUU is
 obtained, the UA would launch a SIP request to an entity, such as a
 presence server, which will generate many requests back towards the
 UA. However, the attacker will use the target’s GRUU in the Contact
 header field of that SUBSCRIBE request. This will cause the traffic

Rosenberg Standards Track [Page 30]

RFC 5627 GRUU Mechanism October 2009

 to be directed towards the target instead. Since the GRUU is
 globally routable, such traffic is more likely to be delivered to the
 target than traffic sent to its IP address. This specification helps
 mitigate this attack by requiring proxies to validate that the GRUU
 in the Contact of a request matches the authenticated identity of the
 sender of the request. This check requires the use of an outbound
 proxy. SIP does not require outbound proxies, and this does leave a
 potential area of vulnerability. However, in practice, nearly all
 deployments of SIP utilize an outbound proxy, and therefore this
 vulnerability is not likely to be a concern.

10.3. Privacy Considerations

 RFC 3323 [15] defines mechanisms for privacy. It distinguishes
 between network-provided privacy and user-provided privacy. In the
 former, the user requests privacy services from the network by
 including a Privacy header field in the request. In the latter, the
 UA follows a basic set of guidelines for construction of its request,
 so a certain level of privacy is afforded.

 The guidelines in Section 4.1 of RFC 3323 [15] for user-provided
 privacy request that a UA construct its Contact header field with a
 URI that omits a user part, and utilizes the IP address or hostname
 of the UA. Such recommendations are in conflict with the rules
 defined in this specification, which require the usage of a GRUU in
 the Contact header field.

 However, the temporary GRUUs provided by the registrar can be used in
 place of the Contact URI format described in RFC 3323 [15]. A user
 agent would gather the temporary GRUU returned in each REGISTER
 response, and keep a small number of them cached. When it makes or
 receives a call, a temporary GRUU is used to populate the Contact
 header field.

 A UA can either elect to use the same temporary GRUU in each call, or
 it can use a different temporary GRUU in each call. The choice
 depends on the level of privacy desired:

 o A UA utilizing the same temporary GRUU for each call will allow a
 correspondent, based solely on investigation of the Contact header
 field, to correlate calls as coming from the same UA. This is
 also true for the user-provided privacy procedures in RFC 3323
 [15], since the IP address or hostname in the Contact URI provides
 a similar correlator.

Rosenberg Standards Track [Page 31]

RFC 5627 GRUU Mechanism October 2009

 o A UA utilizing a different temporary GRUU for each call will not
 allow a correspondent, based solely on investigation of the
 Contact header field, to correlate calls as coming from the same
 UA.

 o In both cases, absent network-provided privacy, IP address and
 port information in the Session Description Protocol (SDP)
 (defined in [10]) will allow a correspondent to correlate calls as
 coming from the same UA.

 o In both cases, if a user makes a call, the correspondent will be
 able to call back by directing requests towards the GRUU in the
 Contact header field. Similarly, features such as transfer and
 digit collection by network application servers (see RFC 4730
 [20]), which depend on a Contact with the GRUU property, will also
 be possible. These kinds of inbound requests will be possible
 until the registration for that UA lapses. A UA that wishes to
 invalidate its previous temporary GRUU in order to limit
 reachability MAY do so by generating a REGISTER refresh with a
 Call-ID that differs from ones used previously. A UA SHOULD NOT
 forcefully expire its registration and then re-register in order
 to invalidate a temporary GRUU; this results in a brief period of
 unreachability and will often produce excess load on the network.
 Refreshing with a new Call-ID is more efficient and is meant as
 the technique for coarse-grained control over the validity of
 temporary GRUUs. A UA wishing to not be disturbed by a specific
 call back will need to implement manual or automated call-handling
 procedures to reject it. This specification does not provide the
 UA the ability to manually invalidate individual temporary GRUUs.
 If a UA insists on not receiving any such inbound requests
 (including ones generated by network applications, such as those
 used for collecting digits), the UA can place a non-GRUU into the
 Contact header field. However, this is NOT RECOMMENDED. Usage of
 a GRUU coupled with automated call rejection features is far
 superior.

 o As long as a temporary GRUU is used to populate the Contact header
 field, a correspondent will not be able to ascertain any
 information about the AOR or instance ID of the UA by inspection
 of the Contact header field. However, absent a network-provided
 privacy service, the IP address in the SDP can be used to
 determine information about the UA, such as its geographic
 location and ISP.

 o In all cases, regardless of whether the UA uses a temporary or
 public GRUU in the Contact, regardless of whether it utilizes GRUU
 at all, and regardless of whether it invokes a network-provided
 privacy service, a correspondent will be able to determine the SIP

Rosenberg Standards Track [Page 32]

RFC 5627 GRUU Mechanism October 2009

 service provider of the UA.

11. IANA Considerations

 This specification defines two new Contact header field parameters,
 one SIP URI parameter, and a SIP option tag.

11.1. Header Field Parameter

 This specification defines two new header field parameters, as per
 the registry created by RFC 3968 [8]. The required information is as
 follows:

 Header field in which the parameter can appear: Contact
 Name of the Parameter: pub-gruu
 Predefined Values: none
 RFC Reference: RFC 5627

 Header field in which the parameter can appear: Contact
 Name of the Parameter: temp-gruu
 Predefined Values: none
 RFC Reference: RFC 5627

11.2. URI Parameter

 This specification defines one new SIP URI parameter, as per the
 registry created by RFC 3969 [9].

 Name of the Parameter: gr
 Predefined Values: none
 RFC Reference: RFC 5627

11.3. SIP Option Tag

 This specification registers a new SIP option tag, as per the
 guidelines in Section 27.1 of RFC 3261 [1].

 Name: gruu

 Description: This option tag is used to identify the Globally
 Routable User Agent URI (GRUU) extension. When used in a
 Supported header, it indicates that a User Agent understands the
 extension. When used in a Require header field of a REGISTER
 request, it indicates that the registrar is not expected to
 process the registration unless it supports the GRUU extension.

Rosenberg Standards Track [Page 33]

RFC 5627 GRUU Mechanism October 2009

12. Acknowledgments

 The author would like to thank Eric Rescorla, Robert Sparks, Rohan
 Mahy, Paul Kyzivat, Alan Johnston, Ya-Ching Tan, Dale Worley, Jeroen
 van Bemmel, Vijay Gurbani, Andrew Allen, Alan Hawrylyshen, Francois
 Audet, Fredrik Thulin, Dean Willis, David Hancock, Keith Drage, and
 Cullen Jennings for their comments and contributions to this work.
 Eric Rescorla provided the text for the introduction and the GRUU
 construction algorithm in the appendix.

13. References

13.1. Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol
 (SIP): Locating SIP Servers", RFC 3263, June 2002.

 [3] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)
 Extension Header Field for Registering Non-Adjacent Contacts",
 RFC 3327, December 2002.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [6] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

 [7] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating
 User Agent Capabilities in the Session Initiation Protocol
 (SIP)", RFC 3840, August 2004.

 [8] Camarillo, G., "The Internet Assigned Number Authority (IANA)
 Header Field Parameter Registry for the Session Initiation
 Protocol (SIP)", BCP 98, RFC 3968, December 2004.

 [9] Camarillo, G., "The Internet Assigned Number Authority (IANA)
 Uniform Resource Identifier (URI) Parameter Registry for the
 Session Initiation Protocol (SIP)", BCP 99, RFC 3969,
 December 2004.

Rosenberg Standards Track [Page 34]

RFC 5627 GRUU Mechanism October 2009

 [10] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [11] Schulzrinne, H., "The tel URI for Telephone Numbers", RFC 3966,
 December 2004.

 [12] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",
 RFC 3841, August 2004.

 [13] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [14] Jennings, C., Ed. and R. Mahy, Ed., "Managing Client-Initiated
 Connections in the Session Initiation Protocol (SIP)",
 RFC 5626, October 2009.

13.2. Informative References

 [15] Peterson, J., "A Privacy Mechanism for the Session Initiation
 Protocol (SIP)", RFC 3323, November 2002.

 [16] Rosenberg, J., Schulzrinne, H., and R. Mahy, "An INVITE-
 Initiated Dialog Event Package for the Session Initiation
 Protocol (SIP)", RFC 4235, November 2005.

 [17] Sparks, R., Hawrylyshen, A., Johnston, A., Rosenberg, J., and
 H. Schulzrinne, "Session Initiation Protocol (SIP) Torture Test
 Messages", RFC 4475, May 2006.

 [18] Schulzrinne, H., "Dynamic Host Configuration Protocol (DHCP-
 for-IPv4) Option for Session Initiation Protocol (SIP)
 Servers", RFC 3361, August 2002.

 [19] Sparks, R., Johnston, A., and D. Petrie, "Session Initiation
 Protocol (SIP) Call Control - Transfer", BCP 149, RFC 5589,
 June 2009.

 [20] Burger, E. and M. Dolly, "A Session Initiation Protocol (SIP)
 Event Package for Key Press Stimulus (KPML)", RFC 4730,
 November 2006.

 [21] Mahy, R. and D. Petrie, "The Session Initiation Protocol (SIP)
 "Join" Header", RFC 3911, October 2004.

 [22] Mahy, R., Biggs, B., and R. Dean, "The Session Initiation
 Protocol (SIP) "Replaces" Header", RFC 3891, September 2004.

Rosenberg Standards Track [Page 35]

RFC 5627 GRUU Mechanism October 2009

 [23] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)
 Extension Header Field for Service Route Discovery During
 Registration", RFC 3608, October 2003.

 [24] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
 Package for Registrations", RFC 3680, March 2004.

 [25] Camarillo, G., "Compressing the Session Initiation Protocol
 (SIP)", RFC 3486, February 2003.

 [26] Burger, E., Van Dyke, J., and A. Spitzer, "Basic Network Media
 Services with SIP", RFC 4240, December 2005.

 [27] Jennings, C., Audet, F., and J. Elwell, "Session Initiation
 Protocol (SIP) URIs for Applications such as Voicemail and
 Interactive Voice Response (IVR)", RFC 4458, April 2006.

 [28] Kyzivat, P., "Registration Event Package Extension for Session
 Initiation Protocol (SIP) Globally Routable User Agent URIs
 (GRUUs)", RFC 5628, October 2009.

 [29] Rosenberg, J., van Elburg, J., Holmberg, C., Audet, F., and S.
 Schubert, Ed., "Delivery of Request-URI Targets to User
 Agents", Work in Progress, June 2009.

Rosenberg Standards Track [Page 36]

RFC 5627 GRUU Mechanism October 2009

Appendix A. Example GRUU Construction Algorithms

 The mechanism for constructing a GRUU is not subject to
 specification. This appendix provides an example that can be used by
 a registrar to construct a public and a temporary GRUU. Of course,
 others are permitted, as long as they meet the constraints defined
 for a GRUU.

A.1. Public GRUU

 The most basic approach for constructing a public GRUU is to take the
 AOR and place the actual value of the instance ID into the contents
 of the "gr" URI parameter.

A.2. Temporary GRUU

 This specification requires a registrar to create a new temporary
 GRUU on each registration refresh. If a registration is very long
 lived, this can quickly result in hundreds or even thousands of
 temporary GRUUs being created and allocated to a UA. Consequently,
 it is important to have an algorithm for constructing temporary GRUUs
 that does not require additional storage that grows in size with the
 number of temporary GRUUs. The following algorithm meets this goal.

 The registrar maintains a counter, I. This counter is 48 bits and is
 initialized to zero. The counter is persistently stored, using a
 backend database or other similar technique. When the registrar
 creates the first temporary GRUU for a particular AOR and instance
 ID, the registrar notes the current value of the counter, I_i, and
 increments the counter in the database. The registrar then maps I_i
 to the AOR and instance ID using the database, a persistent hashmap
 or similar technology. If the registration expires such that there
 are no longer any contacts with that particular instance ID bound to
 the GRUU, the registrar removes the mapping. Similarly, if the
 temporary GRUUs are invalidated due to a change in Call-ID, the
 registrar removes the current mapping from I_i to the AOR and
 instance ID, notes the current value of the counter I_j, and stores a
 mapping from I_j to the AOR and instance ID. Based on these rules,
 the hashmap will contain a single mapping for each AOR and instance
 ID for which there is a currently valid registration.

 The usage of a counter in a 48-bit space with sequential assignment
 allows for a compact representation of the hashmap key, which is
 important for generating GRUUs of reasonable size. The counter
 starts at zero when the system is initialized. Persistent and
 reliable storage of the counter is required to avoid misrouting of a
 GRUU to the wrong AOR and instance ID. Similarly, persistent storage
 of the hashmap is required, even through proxy and registrar

Rosenberg Standards Track [Page 37]

RFC 5627 GRUU Mechanism October 2009

 restarts. If the hashmap is reset, all previous temporary GRUUs
 become invalidated. This might cause dialogs in progress to fail, or
 future requests towards a temporary GRUU to fail when they normally
 would not. The same hashmap needs to be accessible by all proxies
 and registrars that can field requests for a particular AOR and
 instance ID.

 The registrar maintains a pair of local symmetric keys K_e and K_a.
 These are regenerated every time the counter is reset. When the
 counter rolls over or is reset, the registrar remembers the old
 values of K_e and K_a for a time. Like the hashmap itself, these
 keys need to be shared across all proxy and registrars that can
 service requests for a particular AOR and instance ID.

 To generate a new temporary GRUU, the registrar generates a random
 80-bit distinguisher value D. It then computes:

 M = D || I_i
 E = AES-ECB-Encrypt(K_e, M)
 A = HMAC-SHA256-80(K_a, E)

 Temp-Gruu-userpart = "tgruu." || base64(E) || base64(A)

 where || denotes concatenation, and AES-ECB-Encrypt represents AES
 encryption in electronic codebook mode. M will be 128 bits long,
 producing a value of E that is 128 bits and A that is 80 bits. This
 produces a user part which has 42 characters.

 When a proxy receives a request whose user part begins with "tgruu.",
 it extracts the remaining portion, and splits it into 22 characters
 (E’) and the remaining 14 characters (A’). It then computes A and E
 by performing a base64 decode of A’ and E’ respectively. Next, it
 computes:

 Ac = HMAC-SHA256-80(K_a, E)

 If the counter has rolled over or reset, this computation is
 performed with the current and previous K_a. If the Ac value(s) that
 are computed do not match the value of A extracted from the GRUU, the
 GRUU is rejected as invalid. Next, the proxy computes:

 M = AES-ECB-Decrypt(K_e, E)

 If the counter has rolled over, this computation is done using the
 value of K_e that goes with the value of K_a, which produced a valid
 Ac in the previous HMAC validation. The leading 80 bits (the
 distinguisher D) are discarded, leaving an index I_i in the hashmap.
 This index is looked up. If it exists, the proxy now has the AOR and

Rosenberg Standards Track [Page 38]

RFC 5627 GRUU Mechanism October 2009

 instance ID corresponding to this temporary GRUU. If there is
 nothing in the hashmap for the key I_i, the GRUU is no longer valid
 and the request is rejected.

 The usage of a 48-bit counter allows for the registrar to have as
 many as a billion AORs, with 10 instances per AOR, and cycle through
 10,000 Call-ID changes for each instance through the duration of a
 single registration. These numbers reflect the average; the system
 works fine if a particular AOR has more than 10 instances or a
 particular instance cycles through more than 10,000 Call-IDs in its
 registration, as long as the average meets these constraints.

Appendix B. Network Design Considerations

 The GRUU specification works properly based on logic implemented at
 the user agents and in the authoritative proxies on both sides of a
 call. Consequently, it is possible to construct network deployments
 in which GRUUs will not work properly.

 One important assumption made by the GRUU mechanism is that, if a
 request passes through any proxies in the originating domain prior to
 visiting the terminating domain, one of those proxies will be the
 authoritative proxy for the User Agent Client (UAC). Administrators
 of SIP networks will need to make sure that this property is
 retained. There are several ways it can be accomplished:

 1. If the user agents support the service-route mechanism [23], the
 registrar can implement it and return a service route that points
 to the authoritative proxy. This will cause requests originated
 by the user agent to pass through the authoritative proxy.

 2. The user agents can be configured to never use an outbound proxy,
 and send requests directly to the domain of the terminating
 party. This configuration is not practical in many use cases,
 but it is a solution to this requirement.

 3. The user agents can be configured with an outbound proxy in the
 same domain as the authoritative proxy, and this outbound proxy
 forwards requests to the authoritative proxy by default. This
 works very well in cases where the clients are not roaming; in
 such cases, the outbound proxy in a visited network may be
 discovered dynamically through DHCP [18].

 4. In cases where the client discovers a local outbound proxy via a
 mechanism such as DHCP, and is not implementing the service route
 mechanism, the UA can be configured to automatically add an
 additional Route header field after the outbound proxy, which
 points to a proxy in the home network. This has the same net

Rosenberg Standards Track [Page 39]

RFC 5627 GRUU Mechanism October 2009

 effect of the service route mechanism, but is accomplished
 through static configuration.

Author’s Address

 Jonathan Rosenberg
 Cisco Systems
 Edison, NJ
 US

 EMail: jdrosen@cisco.com
 URI: http://www.jdrosen.net

Rosenberg Standards Track [Page 40]

