IMHAVERIK

Functional Specification

For GNU MAVERIK version 6.2

Jon Cook, Toby Howard

Advanced Interfaces Group
Department of Computer Science
University of Manchester

March 29, 2002






Contents

1 Introduction 1

1.1 Naming conventions . . . . . . . . . . . 1
I MAVERIK type specifications 3
2 Level 1 types S
3 Level 2 types 39
4 Level 3 types 97
Il MAVERIK function specifications 121
5 Level 1 functions 123
6 Level 2 functions 243
7 Level 3 functions 293
111 MAVERIK constant specifications 355
8 Constants and macros organised by usage 357
Functions Index 366

Types, Variables and Constants Index 375






Chapter 1

Introduction

This document describes the GNU MAVERIK Applications Programmer Interface, and documents
constant and type definitions, and function specifications.

The MAVERIK APl comprises over 550 functions, only a small subset of which will commonly be
used by programmers wishing to use MAVERIK “out of the box”. Similarly, many functions will be
of interest only to those users wishing to understand the internal workings of MAVERIK, and possibly
wishing to tailor it to their own requirements.

With these various requirements in mind, we have divided the MAVERIK functionality into three
“levels”, which we hope will help users to find their way around.

e Level 1 functions are those which first-time users of MAVERIK will normally use. These func-
tions make use of the many defaults built into MAVERIK, and should enable users to create
MAVERIK applications quickly.

e Level 2 functions are those which allow more advanced use of MAVERIK. Examples might
include defining new classes of object, or defining new methods of navigation.

e Level 3 functions are intended for “Research and Development” using the MAVERIK system.
They are low-level functions which provide interfaces to the MAVERIK kernel and associated
modules. For example, Level 3 functions would be required for extending MAVERIK to pro-
vide new level-of-detail processing algorithms, new object culling algorithms, or to add kernel
support for new kinds of input devices.

Note: This document represents work in-progress. It contains place holders for all of the MAVERIK
functions and types, but we simply haven’t had the time to fully document, and importantly, cross-link
them all. We have concentrated on documenting the most common functions — the others are being
steadily added.

1.1 Naming conventions

e All MAVERIK typedefs and constants begin with the prefix MAV_

e All MAVERIK functions begin with the prefix mav _

1



CHAPTER 1. INTRODUCTION

e Multi-word function names, such as mav_frameBegin, follow the usual conventions of capital-
ising all but the first word in the function name.



Part |

MAVERIK type specifications






Chapter 2

Level 1 types

MAV_BB MAVERIK Level 1 typedefs

Summary

Axis-aligned bounding box.

Syntax

typedef struct {
MAV vector nin;
MAV_vect or nax;
} MAV_BB;

Description

The axis aligned bounding box, MAV_BB, comprises two 3D positions, m n and max, to define its extent.
It is up to the user to ensure that max is greater than mi n.




6 CHAPTERZ2. LEVEL 1 TYPES

MAV _box MAVERIK Level 1 typedefs

Summary

Default object class “box”.

Syntax

typedef struct {
MAV vector size;
MAV_sur f aceParanms *sp;
MAV matrix matrix;
voi d *userdef;

} MAV_box;

Description

An axis-aligned box is defined with its center at the origin. It has a dimension, si ze, along the X,Y
and Z axis.




MAV_composite

MAVERIK Level 1 typedefs

Summary

Default object class “composite”.

Syntax

typedef struct {
int nunobj ;
MAV_obj ect **obj;
MAV_BB bb;
int selobj;
char *filenang;
MAV matrix matrix;
voi d *userdef;

} MAV_conposite;

Description

A composite object is a number, nurobj , of objects which are first transformed by a common trans-
formation matrix, mat ri x, before being transformed by their individual transformation matrices. The
objects are defined as an array, obj, of pointers to MAVERIK objects. Once defined, the objects
comprising the composite objects must remain static, i.e. changing the number of objects in it, or
any details of those objects, is forbidden. And since the contents are static, a local coordinate frame

bounding box is stored in bb for efficiency.

Composite objects are not intended to be defined directly by an application, but rather by functions
such as mav_compositeRead (page 129), which defines a composite object from a VRML97, Light-

wave or AC3D format file.

If a composite object is selected via the usual mechanism then the integer sel obj holds the array

element of the selected sub-object.




8 CHAPTERZ2. LEVEL 1 TYPES

MAV_cone MAVERIK Level 1 typedefs

Summary

Default object class “cone”.

Syntax

typedef struct {
float rt;
float rb;
float height;
int nverts;
int endcap;
MAV_sur f aceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_cone;

Description

The cone is defined with its centre at the origin and its axis aligned along the Z axis. It has a radius at
its top, rt, a radius at its bottom, r b, and a height, hei ght , along the Z axis.

When rendered, nverts vertices are used (if greater than two and mav _opt _cur veLOD is not set) to
facet the curved surface of the cone, and the symbolic constant endcap, set to MAV_TRUE or MAV_FALSE,
control whether or not the object has endfaces or is effectively hollow.




MAV _ctorus MAVERIK Level 1 typedefs

Summary

Default object class “circular torus”.

Syntax

typedef struct {
float rmajor;
float rminor;
float angle;
int nverts;
int nchips;
int endcap;
MAV_sur f aceParams *sp;
MAV matrix matrix;
voi d *userdef;

} MAV ctorus;

Description

The circular torus (a torus with a circular cross section) is defined with its centre at the origin and with
a major radius, r maj or, a minor radius, r m nor, and to an angular extent, angl e, in radians from the
X axis around the Z axis.

When rendered, nvert s vertices are used to facet the curved surface defined by the minor radius, and
nchi ps vertices the curved surface defined by the major radius. Both values are only applicable if
they are greater than two and mav_opt _cur veLQOD is not set. The symbolic constant endcap, set to
MAV_TRUE or MAV_FALSE, control whether or not the object has endfaces or is effectively hollow.




10 CHAPTERZ2 LEVEL 1 TYPES

MAV _cylinder MAVERIK Level 1 typedefs

Summary

Default object class “cylinder”.

Syntax

typedef struct {
float radius;
float height;
int nverts;
int endcap;
MAV_sur faceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_cylinder;

Description

The cylinder is defined with its centre at the origin and its axis aligned along the Z axis. It has a radius,
radi us, and a height, hei ght , along the Z axis.

When rendered, nverts vertices are used (if greater than two and mav_opt _cur veLOD is not set)
to facet the curved surface of the cylinder, and the symbolic constant endcap, set to MAV_TRUE or
MAV_FALSE, control whether or not the object has endfaces or is effectively hollow.




11

MAV _ellipse MAVERIK Level 1 typedefs

Summary

Default object class “ellipse”.

Syntax

typedef struct {
float radius;
float height;
int nverts;
int nchips;
MAV_sur faceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_ el lipse;

Description

An ellipse is defined with its centre at the origin and with a radius, hei ght, along the Z axis and a
radius, r adi us, in the XY plane.

When rendered, nvert s vertices are used to facet the curved surface of the ellipse around the Z axis,
and nchi ps vertices around the X axis from -90 to 90 degrees. Both values are only applicable if they
are greater than two and mav_opt _cur veLOD is not set.




12 CHAPTERZ2 LEVEL 1 TYPES

MAV _facet MAVERIK Level 1 typedefs

Summary

Default object class “facet”.

Syntax

typedef struct {
int npolys;
int *np;
MAV_vector **norm
MAV texCoord **tex;
MAV_vector **vert;
MAV_sur f aceParams **sp;
MAV matrix matrix;
voi d *userdef;

} MAV facet;

Description

A facet is a number of polygons which share a common transformation matrix and which allow a
normal to be defined for each vertex, rather than for each polygon, thus allowing Gouraud shading
across the face of the polygon. They are defined in a similar manner to the polygon group, but with a
normal, nor m per vertex.




13

MAV _frameFn MAVERIK Level 1 typedefs

Summary

The frame function type

Syntax

typedef void (*MAV_frameFn)(void *);

Description




14 CHAPTERZ2 LEVEL 1 TYPES

MAV _hellipse MAVERIK Level 1 typedefs

Summary

Default object class “half ellipse”.

Syntax

typedef struct {
float radius;
float height;
int nverts;
int nchips;
int endcap;
MAV_sur f aceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_hel | i pse;

Description

The half ellipse is defined as the positive Z half-space of an ellipse.

When rendered, nverts vertices are used to facet the curved surface of the half ellipse around the Z
axis, and nchi ps vertices around the X axis from 0 to 90 degrees. Both values are only applicable
if they are greater than two and mav _opt _cur veLOD is not set. The symbolic constant endcap, set to
MAV_TRUE or MAV_FALSE, control whether or not the object has an endface or is effectively hollow.




15

MAV_hsphere MAVERIK Level 1 typedefs

Summary

Default object class “half sphere”.

Syntax

typedef struct {
float radius;
int nverts;
int nchips;
int endcap;
MAV_sur faceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_hsphere;

Description

The half sphere is defined as the positive Z half-space of a sphere.

When rendered, nverts vertices are used to facet the curved surface of the half sphere around the Z
axis, and nchi ps vertices around the X axis from 0 to 90 degrees. Both values are only applicable
if they are greater than two and mav _opt _cur veLOD is not set. The symbolic constant endcap, set to
MAV_TRUE or MAV_FALSE, control whether or not the object has an endface or is effectively hollow.




16

CHAPTERZ2 LEVEL 1 TYPES

MAV keyboardEvent

MAVERIK Level 1 typedefs

Summary

Keyboard event.

Syntax

typedef struct {
MAV_wi ndow *wi n;
int x;
inty;
int root_x;
int root_y;
MAV |ine line;
int intersects;
MAV_obj ect *obj;

MAV_obj ect I ntersection objint;

int key;

int modifiers[ MAV_MODI FI ER MAX] ;

int novement;
} MAV_keyboar dEvent ;

Description

The keyboard event data structure, MAV_keyboar dEvent , is passed to the application supplied callback
function, set with the mav_callbackKeyboardSet (page 126) function, upon keyboard events and

details that event.

e Win

window in which event occurred.

e X,y

position of mouse relative to window origin when event occured.

e root _x,root_y

as (x, y) but relative to root window

e line

the line from the eye point through the world position of the mouse when the keyboard event

occured.



17

intersects
MAV_TRUE if line intersects an object, MAV_FALSE otherwise.

e 0hj
the object intersected by the line (if any).

e 0bjint
the details of any object intersection.

e key
The key pressed. Either this is the ASCII value of the key if printable or a hash defined value
for keys such as the function and cursor keys. Note that non-ASCII symbols, such as the pound
and euro signs, may not correctly interpreted.

e nodifiers
an array containing the status (MAV_PRESSED or MAV_RELEASED) of the various keyboard modi-
fiers (e.g. MAV_MCDI FI ER_SHI FT, MAV_MODI FI ER_CTRL, MAV_MCDI FI ER ALT).

e novenent
MAV_PRESSED if key down event, MAV_RELEASED otherwise

The MAV_obj ect which is passed as the first parameter to the event callback function may well be
different than obj stored in this data structure since the former is always an object of the same type
as the callback was registered for. Therefore, event callbacks registered for non-object classes such as
mav_cl ass_any will receive a dummy object (in this case mav _obj ect _any) as their first parameters.
No interpretation should be made of these objects by the application. However, the obj field always
contains the object which the mouse was pointing at when the event occurred regardless of how the
callback function was registered.




18 CHAPTERZ2 LEVEL 1 TYPES

MAV _line MAVERIK Level 1 typedefs

Summary

Infinite line.

Syntax

typedef struct {
MAV_vector pt;
MAV vector dir;
} MAV line;

Description

A MAV_| i ne is an infinite line, comprising an origin, pt, and a normalised direction vector, di r.




19

MAV_mouseEvent

MAVERIK Level 1 typedefs

Summary

Mouse event.

Syntax

typedef struct {
MAV_wi ndow *wi n;
int x;
inty;
int root_x;
int root_y;
MAV |ine line;
int intersects;
MAV_obj ect *obj;

MAV_obj ect I ntersection objint;

int button;

int modifiers[ MAV_MODI FI ER MAX] ;

int novement;
} MAV_nouseEvent;

Description

The mouse event data structure, MAV_nmouseEvent , is passed to the application supplied callback func-
tion (set with the mav_callbackMouseSet (page 127) function) upon mouse button events and details

that event.

e Win

window in which event occurred.

e X,y

position of mouse relative to window origin when event occured.

e root _x,root_y

as (x,y) but relative to root window.

e line

the line from the eye point through the world position of the mouse when the mouse event

occured.



20

CHAPTERZ2 LEVEL 1 TYPES

intersects
MAV_TRUE if line intersects an object, MAV_FALSE otherwise.

obj
the object intersected by the line (if any).

obj i nt
the details of any object intersection.

button
MAV_LEFT_BUTTON, MAV_M DDLE BUTTON, MAV_RI GHT_BUTTON, MAV_WHEEL UP_BUTTON or MAV_WHEEL DOAN_BUTTON
to indicate which button generated the event.

nmodi fiers
an array containing the status (MAV_PRESSED or MAV_RELEASED) of the various keyboard modi-
fiers (e.g. MAV_MODI FI ER_SHI FT, MAV_MODI FI ER_CTRL, MAV_MODI FI ER_ALT).

movement
MAV_PRESSED if button down event, MAV_RELEASED otherwise.

See MAV_keyboar dEvent for why obj will not necessarily be the same as the MAV_obj ect passed to
the event callback function.




21

MAV polygon MAVERIK Level 1 typedefs

Summary

Default object class “polygon”.

Syntax

typedef struct {
int np;
MAV_vect or norm
MAV t exCoord *tex;
MAV_vector *vert;
MAV_sur faceParams *sp;
MAV matrix matrix;
voi d *userdef;

} MAV_pol ygon;

Description

A polygon is defined by a number, np, of points, a normal, nor m and collection of vertices, vert, and,
optionally, texture coordinates, t ex. The polygon must be concave, planar and the vertices ordered
anti-clockwise around the normal.

Texture coordinates must be provided is this object is to be textured.




22 CHAPTERZ2 LEVEL 1 TYPES

MAV _polygonGrp MAVERIK Level 1 typedefs

Summary

Default object class “polygon group”.

Syntax

typedef struct {
int npolys;
int *np;
MAV_vector *norm
MAV texCoord **tex;
MAV_vector **vert;
MAV_sur f aceParams **sp;
MAV matrix matrix;
voi d *userdef;

} MAV_pol ygonG p;

Description

A polygon group is a number, npol ys, of polygons, which share a common transformation matrix.
Polygon groups can be used to define objects which comprise of many polygons without the rendering
inefficiency of each polygon having an individual transformation matrix.




23

MAV polyline MAVERIK Level 1 typedefs

Summary

Default object class “polyline”.

Syntax

typedef struct {
int nlines;
int *np;
int *closed;
MAV_vector **vert;
MAV_sur faceParams **sp;
MAV matrix matrix;
voi d *userdef;
} MAV_pol yline;

Description

A polyline is a number, nl i nes, of lines each consisting of a number, np, of vertices, vert, each
connected by a line. ¢l osed indicates if the last vertex connects back to the first.

Since it only make sense for this object to be rendered with an emissive solid, attempting to render it
with a material or texture gives undefined results.




24 CHAPTERZ2 LEVEL 1 TYPES

MAV _pyramid MAVERIK Level 1 typedefs

Summary

Default object class “pyramid”.

Syntax

typedef struct {
float bot_size x;
float bot_size_y;
float top_size x;
float top_size. y;
float offset x;
float offset_y;
float height;
MAV_sur f aceParams *sp;
MAV matrix matrix;
voi d *userdef;

} MAV_pyrami d;

Description

A pyramid is defined with its centre at the origin. Its top and bottom faces, which are in the XY
plane, have sizes t op_si ze_x, t op_si ze_y, bot _si ze_x and bot _si ze_y. The pyramid has a height,
hei ght, along the Z axis. The X,Y centres of the top and bottom faces are offset by of f set x and
of f set _y respectively.




25

MAV _rectangle MAVERIK Level 1 typedefs

Summary

Default object class “rectangle”.

Syntax

typedef struct {
float w dth;
float height;
float xtile;
float ytile;
MAV_sur faceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_rectangl e;

Description

The rectangle allows for a simple definition of the common case of a 4-vertex polygon centred at the
origin with its normal aligned along the positive Z axis. Is is defined by its wi dt h and hei ght along
the X and Y axis respectively.




26 CHAPTERZ2 LEVEL 1 TYPES

MAV _rtorus MAVERIK Level 1 typedefs

Summary

Default object class “rectangular torus”.

Syntax

typedef struct {
float radius;
float w dth;
float height;
float angle;
int nchips;
int endcap;
MAV_sur f aceParams *sp;
MAV matrix matrix;
voi d *userdef;

} MAV_ rtorus;

Description

The rectangular torus (a torus with a rectangular cross section) is defined with the centre at the origin
and with a radius, r adi us, a height, hei ght , width, wi dt h and to an angular extent, angl e, in radians
from the X axis around the Z axis.

When rendered, nchi ps vertices are used (if greater than two and mav _opt _cur veLOD is not set) to
facet the curved surface defined by the radius. The symbolic constant endcap, set to MAV_TRUE or
MAV_FALSE, controls whether or not the object has endfaces or is effectively hollow.




27

MAV_SMSODbj MAVERIK Level 1 typedefs

Summary

SMS object list

Syntax

typedef struct {
MAV_SMS *snis;
MAV_obj ect *sel obj ;
MAV matrix matrix;
voi d *userdef;

} MAV_SMBbj ;

Description

An SMS object contains an SMS, sns, of objects which are first transformed by a common transfor-
mation matrix, mat ri x, before being transformed by their individual transformation matrix. Objects
can be freely added to and removed from the SMS using the usual functions for manipulating SMS’s.

An SMS object can be added as an object to any other SMS object, enabling hierarchical structures to
be constructed.

If this object is selected via the usual mechanism then sel obj holds a pointer to the selected sub-
object.




28 CHAPTERZ2 LEVEL 1 TYPES

MAV _sphere MAVERIK Level 1 typedefs

Summary

Default object class “sphere”.

Syntax

typedef struct {
float radius;
int nverts;
int nchips;
MAV_sur faceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_sphere;

Description

A sphere is defined with its centre at the origin with a radius r adi us.

When rendered, nvert s vertices are used to facet the curved surface of the sphere around the Z axis,
and nchi ps vertices around the X axis from -90 to 90 degrees. Both values are only applicable if they
are greater than two and mav_opt _cur veLQOD is not set.




29

MAV _surfaceParams

MAVERIK Level 1 typedefs

Summary

Surface parameters.

Syntax

typedef struct {
int node;
int colour;
int material;
int texture;
} MAV_surfacePar ans;

Description

Every default object contains a field of type MAV_sur f acePar ans, which determines “what colour” is

used to render the object. node can take one of the following values:

e MAV_COLOUR
an ambient colour

e MAV_MATERI AL
a material type

o MAV_TEXTURE
a decal texture

o MAV_LI T_TEXTURE

a texture modulated by the material

o MAV_BLENDED_TEXTURE

a blending of the material and texture depending on the texture’s alpha value (O=material, 1=tex-

ture).

The other fields, col our, mat eri al and t ext ur e, respectively specify which colour, material and/or
texture index to use from the palette associated with the window in which the object is being drawn.
Only for the case of MAV_LI T_TEXTURE and MAV_BLENDED_TEXTURE does more than one index need to

be given.



30 CHAPTER 2. LEVEL 1 TYPES
See also

mav_surfaceParamsNew




31

MAV _teapot MAVERIK Level 1 typedefs

Summary

Default object class “teapot”.

Syntax

typedef struct {
float size;
i nt subdi visions;
MAV_t eabag t eabag;
int |unps;
MAV_sur faceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_t eapot ;

Description

The classic computer graphics teapot without which no Virtual Environment is complete. The teapot
is orientated with its Y axis as “up” and the spout pointing along the positive X axis. The teapot
has an extent si ze between the edge of the handle and the tip of the spout. The bezier surfaces by
which the teapot is defined are subdivided subdi vi si ons times when rendered (if greater than zero
and mav _opt _cur veLCD is not set).

The type of tea used to brew-up is governed by the enumerated constant t eabag which is set to either
TETLEY, PG_TI PS or EARL_GREY. The amount of sugar used is controlled by | unps, in units of heaped
teaspoons, and should be set to less than 2 otherwise you’ll get fat and rot your teeth.




32 CHAPTERZ2 LEVEL 1 TYPES

MAV _text MAVERIK Level 1 typedefs

Summary

Default object class “text”.

Syntax

typedef struct {
char *text;
int style;
int justify;
MAV_sur faceParams *sp;
MAV matrix matrix;
voi d *userdef;
} MAV_text;

Description

The text object allows 3D text to be rendered in a scene. The text, t ext, is defined in the XY plane
with the tallest character being approximately 1 unit along the Y axis. The origin is halfway up the
text and, depending on the value of justify, set to MAV_LEFT_JUSTI FY, MAV_CENTRE_JUSTI FY or
MAV_RI GHT_JUSTI FY, is either at the left edge of the text, at its centre or at the right edge respectively.
styl e can take the value MAV_STROKE_FONT, MAV_QUTLI NE_FONT, or MAV_FI LLED_FONT.




33

MAV _timer MAVERIK Level 1 typedefs

Summary

Timer.

Syntax

typedef struct {
MAV time start;
MAV time end;
MAV time el apsed;
float wall;
float cpu;

} MAV_tiner;

Description

The MAVERIK timer data structure is used to give both the wallclock and CPU times that have elapsed
between calls to mav_timerStart and mav_timerStop (page 212).




34

CHAPTERZ2 LEVEL 1 TYPES

MAV _vector

MAVERIK Level 1 typedefs

Summary

3D vector.

Syntax

typedef struct {
float x;
float v;
float z;

} MAV_ vector;

Description

A MAVERIK vector comprises 3 floats for the (x,y,z) components. MAV_vect or ’s are used to represent

both vectors and coordinate positions.




35

MAV _viewModifierParams MAVERIK Level 1 typedefs

Summary

View modifier (i.e. stereo) parameters.

Syntax

typedef struct {
float offset;
float angle;
voi d *userdef;
} MAV_vi ewhodi fi er Par ans;

Description

The MAV_vi ewibdi f i er Par ans data structure defines the parameters used by the view modifier func-
tion of a window to perfrom stereo offset calulations.

The supplied view modifier functions, mav_eyeL eft and mav_eyeRight, offset the view by +/- of f set /2.0
along the view right vector. angl e is currently not used, but could be used by users who want to write
view modifier functions which implement a convergence in the view directions. Similarly, user def
can be used to expand this data structure further to include any application specific data which could

be used in stereo offset calculations.




36

CHAPTERZ2 LEVEL 1 TYPES

MAYV _viewParams

MAVERIK Level 1 typedefs

Summary

View parameters.

Syntax

typedef struct {

MAV_vector eye;

MAV vector view,
MAV_vect or up;

MAV vector fixed up;
MAV_vi ewhbdi fierFn nod;
MAV_vector right;
MAV_vector trans_eye;
MAV vector trans_view
MAV_vector trans_up;
MAV vector trans_right;
voi d *userdef;

} MAV_vi ewPar ars;

Description

e eye

position of the viewer’s eye

e View

The MAV_vi ewPar ans data structure defines the user’s view, as follows:

normalized view direction vector, measured from the eye position

e Uup

normalized view up vector

e nod

at the start of each frame, the nod function is called. This arbitrarily transforms the sup-
plied viewing vectors to produce the viewing vectors trans_eye, trans_vi ew, trans_up and
trans_right. Itis these transformed vectors that are actually used to define the view. Setting
this value to NULL, or using the MAV_vi ew\bdi fi er Fn mav_viewParamsFixed (page 222),
performs a null transformation (that is, the transformed vectors are the same as the supplied
vectors). However, advanced users might wish to write their own functions to implement, say,



37

an over-the-shoulder view for an avatar or a view whose orientation is matched to that of an
HMD.

e fixed.up
normalized world up vector, used by some navigation functions. This field is optional but it is
strongly recommended that it is defined.

e right
not directly defined by the user but rather calculated at the start of each frame by the kernel using
the other viewing vectors. Since it is used by many routines, it is stored in the data structure
rather than being calculated each time it is needed.

e trans_view trans_up,trans_right
see description of mod.

e userdef
allows arbitrary application data to be added to this structure

The viewing frustum is only fully defined once the MAV_vi ewPar ans are associated with a window,
using the mav_windowViewParamsSet (page 241) function, thus defining the field of view, aspect
ratio and near/far clip planes.




38

CHAPTERZ2 LEVEL 1 TYPES



Chapter 3

Level 2 types

MAV _avatar MAVERIK Level 2 typedefs

Summary

Avatar

Syntax

typedef struct {
MAV_avat arPart *root;
MAV _avatarPart *part[19];
MAV_surfaceParans *sp[5];
int novement;
float speed;
float offset;
int ani nfFronat ;
int ani mate;
int nmove;
MAV timer tiner;
float tine;
float last_tine;
MAV vector |ast_pos;
MAV matrix vertical;
MAV matrix rotation;
MAV matrix matrix;
MAV vector right hand;
MAV vector |eft hand;
int holding_right;
int holding_left;

39



40 CHAPTER3. LEVEL 2TYPES

MAV_surfaceParans *|aser_sp;
voi d *userdef;
} MAV avatar;

Description




41

MAV _callback

MAVERIK Level 2 typedefs

Summary

Callback

Syntax

typedef struct {
int num
} MAV_cal | back;

Description




42 CHAPTER3. LEVEL 2TYPES

MAV _callbackBBFn MAVERIK Level 2 typedefs

Summary

The calculate bounding box callback function type
Syntax

typedef int (*MAV_cal | backBBFn) (MAV object *, MAV BB *);

Description




43

MAV _callbackCrossingFn MAVERIK Level 2 typedefs

Summary

The crossing event callback function type

Syntax

typedef int (*MAV_cal | backCrossingFn) (MAV_object *, MAV _crossingEvent *);

Description




44 CHAPTER3. LEVEL 2TYPES

MAV _callbackDeleteFn MAVERIK Level 2 typedefs

Summary

The delete callback function type
Syntax

typedef int (*MAV_cal |l backDel et eFn) ( MAV_obj ect *);

Description




45

MAV _callbackDrawFn MAVERIK Level 2 typedefs

Summary

The draw callback function type

Syntax

typedef int (*MAV_cal | backDrawFn) (MAV_object *, MAV_drawlinfo *);

Description




46 CHAPTER3. LEVEL 2TYPES

MAV _callbackDumpFn MAVERIK Level 2 typedefs

Summary

The dump callback function type
Syntax

typedef int (*MAV_cal | backDunpFn) (MAV_object *);

Description




47

MAV _callbackExposeFn MAVERIK Level 2 typedefs

Summary

The expose event callback function type

Syntax

typedef int (*MAV_cal | backExposeFn) ( MAV_obj ect *, MAV_exposeEvent *);

Description




48 CHAPTER3. LEVEL 2TYPES

MAV _callbackFn MAVERIK Level 2 typedefs

Summary

The generic callback function type
Syntax

typedef int (*MAV_cal | backFn) (MAV_object *, void *, void *);

Description




49

MAV _callbackGetMatrixFn MAVERIK Level 2 typedefs

Summary

The get matrix callback function type

Syntax

typedef int (*MAV_cal | backGet Matri xFn) (MAV_obj ect *, MAV_matrix **);

Description




50 CHAPTER3. LEVEL 2TYPES

MAV _callbackGetSurfaceParamsFn MAVERIK Level 2 typedefs

Summary

The get surface parameters callback function type

Syntax

typedef int (*MAV_cal | backGet SurfaceParamsFn) ( MAV_obj ect *, MAV surfaceParams ***);

Description




51

MAV _callbackGetUserdefFn MAVERIK Level 2 typedefs

Summary

The get userdef callback function type

Syntax

typedef int (*MAV_cal | backGet User def Fn) (MAV_object *, void ***);

Description




52 CHAPTER3. LEVEL 2TYPES

MAV _callbackIDFn MAVERIK Level 2 typedefs

Summary

The identify callback function type
Syntax

typedef int (*MAV_cal |l backl DFn) (MAV_object *, char **);

Description




53

MAV _callbacklIntersectFn MAVERIK Level 2 typedefs

Summary

The calculate intersection callback function type

Syntax

typedef int (*MAV_cal | backl ntersect Fn) (MAV_object *, MAV_ line *, MAV objectlntersection *);

Description




54 CHAPTER3. LEVEL 2TYPES

MAV _callbackKeyboardFn MAVERIK Level 2 typedefs

Summary

The keyboard event callback function type

Syntax

typedef int (*MAV_cal | backKeyboar dFn) (MAV_object *, MAV_keyboardEvent *);

Description




55

MAV _callbackMapFn MAVERIK Level 2 typedefs

Summary

The map event callback function type

Syntax

typedef int (*MAV_cal | backMapFn) (MAV object *, MAV_mapEvent *);

Description




56 CHAPTER3. LEVEL 2TYPES

MAV _callbackMouseFn MAVERIK Level 2 typedefs

Summary

The mouse event callback function type

Syntax

typedef int (*MAV_cal | backMouseFn) (MAV_object *, MAV_mouseEvent *);

Description




57

MAV _callbackResizeFn MAVERIK Level 2 typedefs

Summary

The resize event callback function type

Syntax

typedef int (*MAV_cal | backResi zeFn) ( MAV_obj ect *, MAV resizeEvent *);

Description




58 CHAPTER3. LEVEL 2TYPES

MAV _callback TDMFn MAVERIK Level 2 typedefs

Summary

The TDM event callback function type

Syntax

typedef int (*MAV_cal | backTDMFn) (MAV_obj ect *, MAV_TDMEvent *);

Description




59

MAV _class MAVERIK Level 2 typedefs

Summary

Maverik class.

Syntax

typedef struct {
MAV_cal | backFn fn[ MAV_MAX_CBS] [ MAV_MAX W N ;
} MAV cl ass;

Description

This data structure is described for information only. Users will never directly access its contents, but
it is hoped that by exposing them users will gain an insight into how MAVERIK operates.

A MAVERIK class is simply an array of callback functions — methods which act upon the data structure
associated with this class. Note that callback functions are defined on a per class and per window basis,
thus allowing for the possibility of different behaviour in different windows. For example, the draw
callback for an object may cause it to rendered filled in one window, and rendered in wire-frame in
another window.




60 CHAPTER3. LEVEL 2TYPES

MAV _clipPlane MAVERIK Level 2 typedefs

Summary

Clip plane.

Syntax

typedef struct {
MAV_vect or norm
float d;

} MAV clipPl ane;

Description

A MAV_cl i pPl ane is used to define a clipping plane, and consists of the plane normal, norm and a
value, d, which satisfies the equation d = norm pt, where pt is any point on the plane.

The positive half space of the clipping plane defines which objects are to be removed from considera-
tion.




61

MAV _clipPlanes MAVERIK Level 2 typedefs

Summary

Set of clipping planes.

Syntax

typedef struct {

int num

MAV_cl i pPl ane pl anes[ MAV_MAX_CLI P_PLANES] ;
} MAV clipPl anes;

Description

The data structure defines a set of clipping planes, comprising a number, num of clip planes pl anes
upto a maximum of MAV_MAX_CLI P_PLANES (currently 10).




62

CHAPTER3. LEVEL 2TYPES

MAV _colour

MAVERIK Level 2 typedefs

Summary

Colour

Syntax

typedef struct {
int id;
int defwarn;
int defined;

float colour[4];

} MAV_col our;

Description




63

MAV_compositeFormat

MAVERIK Level 2 typedefs

Summary

The supported composite file formats data structure

Syntax

typedef struct {
int defined,
char *ext;
MAV_conposi t eReadFn fn;
} MAV_conposit eFor mat;

Description




64 CHAPTER3. LEVEL 2TYPES

MAV_compositeReadFn MAVERIK Level 2 typedefs

Summary

The composite file parser function
Syntax

typedef int (*MAV_conpositeReadFn)(char *, MAV conposite *, MV matrix);

Description




65

MAV _crossingEvent MAVERIK Level 2 typedefs

Summary

Mouse crossing events.

Syntax

typedef struct {
MAV_wi ndow *wi n;
int dir;

} MAV_crossi ngEvent;

Description

The mouse window crossing (enters/leaves) event data structure, MAV_cr ossi ngEvent , is passesd to
the application supplied callback function (set with the mav_callbackCrossingSet (page 265) func-
tion) to provide details of this event.

The fields are as follows:
e Wn
window for which event occured.

e dir
set to MAV_ENTER or MAP_LEAVE, as appropriate.




66

CHAPTER3. LEVEL 2TYPES

MAYV _drawinfo

MAVERIK Level 2 typedefs

Summary

Drawing information.

Syntax

typedef struct {
MAV_cl i pPl anes cp;
MAV_vi ewPar ans vp;
voi d *userdef;

} MAV_drawl nfo;

Description

The drawing information data structure, MAV_dr awl nf o, is calculated in mav_SMSDisplay (page 203)
and subsequently forms part of the information that is passed to rendering callbacks. The information
consists of the view frustum’s clipping planes cp, the viewing parameters vp, and, for advanced users,
a user definable field user def , to allow for application-specific data to be added to this structure.

The rendering callback for an object can make use of the information in this data structure to perform

fine culling or level-of-detail processing, for example.




67

MAV _exposeEvent MAVERIK Level 2 typedefs

Summary

Window expose events.

Syntax

typedef struct {
MAV_wi ndow *wi n;
} MAV_exposeEvent;

Description

The window expose event data structure, MAV_exposeEvent, is passesd to the application supplied
callback function (set with the mav _callbackExposeSet (page 265) function) to provide details of
this event. Its only field is the window, wi n, for which the event occured.




68

CHAPTER3. LEVEL 2TYPES

MAV font

MAVERIK Level 2 typedefs

Summary

Font

Syntax

typedef struct {
int id;
int defwarn;
int defined;
char *nane;
int width[256];
} MAV_font;

Description




69

MAV_HBB MAVERIK Level 2 typedefs

Summary

SMS data structure.

Syntax

typedef struct {
MAV_HBBO uster *root;
int size;
MAV_HBBPoi nt er *poi nter;
} MAV_HBB;

Description

This data structure is supplied for information only.

This is the data structure used to implement the default MAV_HBB SMS, namely, a hierarchy of objects
(based on bounding boxes).

Users should not manipulate this data structure directly, but rather by the execution of the relevant
callback (for example, add object, remove object) which act upon it. Similarly, users will rarely need
to explicitly define this data structure since the mav_HBBNew (page 323) function return a pointer
to a newly created and initialized data structures. This routine act as the second argument to the
mav_SMSNew function. For example:

sme= mav_SVBNew( mav_SMSC ass_HBB, nmav_HBBNew() ) ;




70

CHAPTER3. LEVEL 2TYPES

MAV light

MAVERIK Level 2 typedefs

Summary

Light

Syntax

typedef struct {
int id;
int index;
int defwarn;
int defined;
float anbient[4];
float diffuse[4];

float specul ar[4];

MAV_vect or pos;
int positioning;
} MAV_light;

Description




71

MAV _lightingModel

MAVERIK Level 2 typedefs

Summary

Lighting Model
Syntax

typedef struct {
int id;
int defwarn;
int defined,;
float anbient[4];
int |ocalviewer;
} MAV_Iightinghodel;

Description




72 CHAPTER3. LEVEL 2TYPES

MAV _list MAVERIK Level 2 typedefs

Summary

Generic Maverik list
Syntax

typedef struct MAV_LI STITEM {
voi d *datal;
voi d *dataz;
struct MAV_LI STI TEM *next ;
struct MAV_LI STI TEM *prev;
} MAV [istltem

typedef struct MAV_LI STPO NTER {
MAV |istltem *item
struct MAV_LI STPO NTER *next;
} MAV_|istPointer;

typedef struct {
int length;
MAV |istltem *head;
MAV |istltem *tail;
MAV_|istPointer *current;
} MAV_|ist;

Description




73

MAV_mapEvent MAVERIK Level 2 typedefs

Summary

Window map events.

Syntax

typedef struct {
MAV_wi ndow *wi n;
int map;

} MAV_mapEvent;

Description

The window mapping (iconify/de-iconify) event data structure, MAV_nmapEvent , is passesd to the appli-
cation supplied callback function (set with the mav_callbackMapSet (page 265) function) to provide
details of this event.

The fields are as follows:
e Wn
window for which event occured.

e Tap
set to MAV_VAP or MAP_UNVAP, as appropriate.




74

CHAPTER3. LEVEL 2TYPES

MAV_material

MAVERIK Level 2 typedefs

Summary

Material

Syntax

typedef struct {
int id;
int defwarn;
int defined;
float anbient[4];
float diffuse[4];

float specular[4];
float enission[4];

float shine;
} MAV_material;

Description




75

MAV_matrix MAVERIK Level 2 typedefs

Summary

4x4 transformation matrix.

Syntax

typedef struct {
float mat[4][4];
} MAV_matrix;

Description

The MAVERIK 4x4 transformation matrix. It is strongly recommended that matrices should only
be manipulated using the functions and hash defines provided (see mav_matrixSet, and associated
functions). At their own risk, advanced users may access the individual elements stored in mat .
However, they should be aware of the ordering of the array as discussed in the MAVERIK FAQ and
OpenGL documentation.

Note that matrices should not be skewed, nor have a non-uniform scaling applied to them. This is
because of assumptions made in the default intersection functions.




76 CHAPTER3. LEVEL 2TYPES

MAV _navigatorFn MAVERIK Level 2 typedefs

Summary

Navigator function
Syntax

typedef void (*MAV_navigator Fn) (MAV_vi ewParans *, float, float, float);

Description




77

MAV _object MAVERIK Level 2 typedefs

Summary

Maverik object.

Syntax

typedef struct {
void *the data;
MAV cl ass *the_cl ass;
} MAV_ obj ect;

Description

A MAVERIK object is simply the encapsulation in a single data structure of a pointer to an object’s
data, t he_dat a, and the methods which act upon it, t he_cl ass. This gives a generic handle to any
object, regardless of class, and is used as the argument to other MAVERIK functions.

Applications would rarely need to explicitly create or directly access the fields of this data struc-
ture. This should be achieved by the mav_objectNew, mav_objectDataGet and mav _objectClassGet
functions.

See also

MAV _class, mav_objectNew, mav_objectDataGet, mav_objectClassGet




78 CHAPTER3. LEVEL 2TYPES

MAV _objectintersection MAVERIK Level 2 typedefs

Summary

Obiject/line intersection.

Syntax

typedef struct {
float ptl;
float pt2;
MAV vector intpt;
MAV_vect or surnorm
} MAV_ obj ectIntersection;

Description

The object intersection data structure, MAV_obj ect I nt er secti on, is used by intersection callback
routines to report the details of an object/line intersection test.

Currently, the only data held in this structure is pt 1 — the distance from the line’s origin to the first
intersection of the line with the object. This value should be set to a negative number if the line does
not intersect the object (under these circumstances the intersection callback routine should also return
MAV_FALSE). If the line originates inside the object, pt 1 is zero.

The MAV_obj ect I nt er sect i on for the object with the closest intersection distance forms the obj i nt
field in event callback data structures such as MAV keyboar dEvent .

(This data structure needs re-redesigning, and may well change in the future.)




79

MAV _objList MAVERIK Level 2 typedefs

Summary

SMS data structure.

Syntax

typedef struct {
MAV |ist *list;
} MAV_obj Li st;

Description

This data structure is supplied for information only.

This is the data structure used to implement the default MAV_obj Li st SMS, namely, a simple linked
list of objects.

Users should not manipulate this data structure directly, but rather by the execution of the relevant
callback (for example, add object, remove object) which act upon it. Similarly, users will rarely need
to explicitly define this data structure since the mav_objListNew (page 323) function return a pointer
to a newly created and initialized data structures. This routine act as the second argument to the
mav_SMSNew function. For example:

sns= nmav_SMBNew( mav_SMSC ass_obj Li st, mav_obj Li st New());




80

CHAPTER3. LEVEL 2TYPES

MAV palette

MAVERIK Level 2 typedefs

Summary

Palette
Syntax

typedef struct {
i nt defwarn;
int | mdefwarn;
MAV_| i ghtinghodel |m
int light_defwarn;
MAV_light *lightlist;
int col _defwarn;
MAV_col our *col list;
int mat_defwarn;
MAV material *nmatlist;
int tex_defwarn;
MAV texture *texlist;
MAV_t exEnvFn t exEnv;
int font_defwarn;
MAV font *fontlist;

} MAV pal ette;

Description




81

MAV_quaternion MAVERIK Level 2 typedefs

Summary

Quaternion.

Syntax

typedef struct {
float w
float x;
float v;
float z;
} MAV_quat er ni on;

Description

A MAVERIK quaternion comprises 4 floats which represents the quaternion [w,(x,y,z)]. As with matri-
ces, it is recommended to manipulate quaternions only with the functions provided (see, for example,
mav_quaternionSet (page 199)).




82 CHAPTER3. LEVEL 2TYPES

MAV _resizeEvent MAVERIK Level 2 typedefs

Summary

Window resize events.

Syntax

typedef struct {
MAV_wi ndow *wi n;
int width;
int height;

} MAV resizeEvent;

Description

The resize event data structure, MAV_r esi zeEvent , is passesd to the application supplied callback
function (set with the mav_callbackResizeSet (page 265) function) to provide details of this event.

The fields are as follows:
e Wn
window for which event occured.

e Wi dt h, hei ght
new size of the window.

A default callback routine is registered for this events which updates the window’s state with the new
size and alters the perspective parameters to account for the new apsect. This callbacks have a return
value of -100 which can be checked for by mav_eventsCheck.




83

MAV_SMSCallback

MAVERIK Level 2 typedefs

Summary

SMS Callback

Syntax

typedef struct {
int num
} MAV_SMSCal | back;

Description




84

CHAPTER3. LEVEL 2TYPES

MAV_SMSExecFn

MAVERIK Level 2 typedefs

Summary

SMS Execute function
Syntax

typedef struct {
MAV_SMSExecFnFn fn;
int nocal c;
voi d *parans;

} MAV_SMSExecFn;

Description




85

MAV_SMSExecFnFn MAVERIK Level 2 typedefs

Summary

The SMS execute function type

Syntax

typedef void (*MAV_SMSExecFnFn) (MAV object *, MAV drawinfo *, void *);

Description




86

CHAPTER3. LEVEL 2TYPES

MAV_TDMCursor

MAVERIK Level 2 typedefs

Summary

TDM Cursor
Syntax

typedef struct {
int tracker;
int style;
MAV_sur faceParams *sp;
voi d *userdef;
} MAV_TDMCur sor;

Description




87

MAV_TDMEvent MAVERIK Level 2 typedefs

Summary

TDM Event

Syntax

typedef struct {
MAV_TDMPos pos;
MAV |ine line;
int intersects;
MAV_obj ect *obj;
MAV_obj ect I ntersection objint;
int button;
int tracker;
int nmovenent;
} MAV_TDMEvent;

Description




88 CHAPTER 3. LEVEL 2TYPES
MAV_TDMPos MAVERIK Level 2 typedefs
Summary

TDM Position

Syntax

typedef struct {

MAV_vect or
MAV_vect or
MAV_vect or
MAV_vect or
MAV_mat ri x

MAV_quat er ni on quat er ni on;

} MAV_TDMWPos;

pos;

u;

Vi

n;

matri x;

Description




89

MAYV _texCoord MAVERIK Level 2 typedefs

Summary

Texture coordinate.

Syntax

typedef struct {
float s;
float t;

} MAV_texCoord;

Description

A MAVERIK texture coordinate comprises two floats, s and t , representing the texture coordinates at
a vertex.




90

CHAPTER3. LEVEL 2TYPES

MAV _texEnvFn

MAVERIK Level 2 typedefs

Summary

The apply texture environment callback function type

Syntax

typedef void (*MAV_texEnvFn) (MAV texture *);

Description




91

MAV _texture

MAVERIK Level 2 typedefs

Summary

Texture

Syntax

typedef struct {
int id;
i nt defwarn;
int defined;
int wdth;
int height;
unsi gned long *nmem
char *filenane;
MAV_t exEnvFn t exEnv;
int transparent;
int m pmapped;
int nnaps;
int *xsize;
int *ysize;
unsi gned | ong **ni pnap;
} MAV texture;

Description




92 CHAPTER3. LEVEL 2TYPES

MAV _time MAVERIK Level 2 typedefs

Summary

Time.

Syntax

typedef struct {
| ong sec;
| ong usec;
| ong cpu;

} MAV tine;

Description

The MAVERIK time data structure contains the number of seconds (sec) and microseconds (usec)
since midnight January 1, 1970. Also stored are the number of microseconds of CPU time (cpu),
since program execution began.




93

MAV _viewModifierFn MAVERIK Level 2 typedefs

Summary

The view modification function type

Syntax

typedef void (*MAV_vi ewhbdi fi er Fn) (MAV_wi ndow *);

Description




94 CHAPTER3. LEVEL 2TYPES

MAV_window MAVERIK Level 2 typedefs

Summary

Window

Syntax

typedef struct {
int id;
char *nane;
int x;
inty;
int width;
int height;
MAV_vi ewPar ams *vp;
MAV_vi ewhbdi fierFn nod;
MAV_vi ewhbdi fi er Paranms *vnp;
MAV vector eye;
MAV vector view,
MAV_vect or up;
MAV vector right;
int orthogonal ;
float ncp;
float fcp;
float fov;
float aspect;
float offset;
float angle;
float ortho_size;
MAV matrix viewvat;
MAV matrix proj Mat;
MAV_matrix pdvMat;
float background_red,;
float background_green;
float background_bl ue;
MAV pal ette *pal ette;
MAV vector ncpv[5];
MAV vector fcpv[5];
voi d *userdef;

} MAV_wi ndow;



Description

95




96

CHAPTER3. LEVEL 2TYPES



Chapter 4

Level 3 types

MAV _ctrlF

MAVERIK Level 3typedefs

Summary

The control function key identifer function type

Syntax

typedef void (*MAV_ctrlF)(MAV_ W ndow *);

Description

97



98

CHAPTER4. LEVEL 3TYPES

MAV _deviceCalcFn

MAVERIK Level 3 typedefs

Summary

The device calculate function type

Syntax

typedef void (*MAV_devi ceCal cFn)(void);

Description




99

MAYV _deviceEventFn

MAVERIK Level 3 typedefs

Summary

The device event check function type

Syntax

typedef int (*MAV_devi ceEvent Fn)(void);

Description




100 CHAPTER4. LEVEL 3TYPES

MAV _devicePollFn MAVERIK Level 3 typedefs

Summary

The device poll function type

Syntax

typedef void (*MAV_devi cePol | Fn) (voi d);

Description




101

MAV_modulelDFn

MAVERIK Level 3typedefs

Summary

The module identify function type

Syntax

typedef char *(*MAV_nodul el DFn) (voi d);

Description




102

CHAPTER4. LEVEL 3TYPES

MAV_modulelnitFn

MAVERIK Level 3 typedefs

Summary

The module initialization function type

Syntax

typedef int (*MAV_nodul el nitFn)(void);

Description




103

MAV_SMS MAVERIK Level 3 typedefs

Summary

Maverik SMS

Syntax

typedef struct {
void *the data;
MAV_SMBO ass *the_cl ass;
int selectabl e[ MAV.MAX WN];
voi d *userdef;
} MAV_SMS;

Description

MAVERIK SMS’s are completely analogous to MAVERIK objects in that they are an arbitrary data
structure coupled to methods which act upon it.

A MAVERIK SMS is simply the encapsulation in a single data structure of a pointer to an SMS’s data,
t he_dat a, and the methods which act upon it, t he cl ass. This gives a generic handle to any SMS,
regardless of class, and is used as the argument to other MAVERIK functions. sel ect abl e notes
on a per window basis if the object maintained by SMS are selectable in the usual manner (ie. via
keyboard and mouse events). user def can be used to expand this data structure further to include any
application specific data.

Applications would rarely need to explicitly create or directly access the fields of this data structure.
This should be achieved by the mav_SMSNew, mav_SMSDataGet, mav_SMSClassGet, mav_SMSSelectabilitySet
functions.

See also

MAV_SMSClass, MAV _object, mav_SMSNew, mav_SMSDataGet, mav_SMSClassGet,
mav_SMSSelectabilitySet




104 CHAPTER4. LEVEL 3TYPES

MAV_SMSCallbackDeleteFn MAVERIK Level 3 typedefs

Summary

The SMS delete callback function type
Syntax

typedef int (*MAV_SMSCal | backDel et eFn) (MAV_SMS *, int *);

Description




105

MAV_SMSCallbackEmptyFn MAVERIK Level 3 typedefs

Summary

The SMS empty callback function type

Syntax

typedef int (*MAV_SMSCal | backEnptyFn) (MAV_SMS *, int *);

Description




106 CHAPTER4. LEVEL 3TYPES

MAV_SMSCallbackExecFnFn MAVERIK Level 3 typedefs

Summary

The SMS execute function callback function type

Syntax

typedef int (*MAV_SMSCal | backExecFnFn) (MAV_SMS *, MAV drawinfo *, MAV_SMSExecFn *);

Description




107

MAV_SMSCallbackFn MAVERIK Level 3 typedefs

Summary

The generic SMS callback function type

Syntax

typedef int (*MAV_SMSCal | backFn) (MAV_SMS *, void *, void *, void *, void *);

Description




108 CHAPTER4. LEVEL 3TYPES

MAV_SMSCallbackintersectFn MAVERIK Level 3 typedefs

Summary

The SMS intersects callback function type

Syntax

typedef int (*MAV_SMSCal | backl ntersect Fn) (MAV_SMS *, MAV_wi ndow *, MAV_|ine *, MAV_objectintersection *,

Description




109

MAV_SMSCallbackObjectAddFn MAVERIK Level 3 typedefs

Summary

The SMS add object callback function type
Syntax

typedef int (*MAV_SMSCal | backObj ect AddFn) (MAV_SMS *, MAV_object *);

Description




110 CHAPTER4. LEVEL 3TYPES

MAV_SMSCallbackObjectContainsFn MAVERIK Level 3 typedefs

Summary

The SMS contains object callback function type

Syntax

typedef int (*MAV_SMSCal | backObj ect Cont ai nsFn) (MAV_SMS *, MAV object *, int *);

Description




111

MAV_SMSCallbackObjectNextFn MAVERIK Level 3 typedefs

Summary

The SMS next object callback function type

Syntax

typedef int (*MAV_SMSCal | backObj ect Next Fn) (MAV_SMS *, MAV_object **);

Description




112 CHAPTER4. LEVEL 3TYPES

MAV_SMSCallbackObjectRmvFn MAVERIK Lev